2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 1007  Solved: 415
[Submit][Status]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

 
mobius反演,与“能量采集”不同的是,这道题如果不加一点优化的话,是一定会TLE的。然后考虑优化:
  ans+=segma(mu[i]*(a/i)*(b/i))
由于对于一个给定的区间[l,r], a/l=a/r   b/l=b/r,可以对对这个区间统一处理。
  ans+=segma((sum[r]-sum[l-1])*(a/l)*(n/l))
所以令l=i,这里要记一下
  a/(a/i)==r+1
所以剩下的就可以随便搞一下了。
 
 
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
#ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif
typedef long long qword;
#define MAXN 100000
int prime[MAXN/];
bool pflag[MAXN];
int topp=-;
int mu[MAXN];
int sum[MAXN];
void init()
{
int i,j;
mu[]=;
for (i=;i<MAXN;i++)
{
if (!pflag[i])
{
prime[++topp]=i;
mu[i]=-;
}
for (j=;j<=topp&&prime[j]*i<MAXN;j++)
{
pflag[i*prime[j]]=true;
mu[i*prime[j]]=-mu[i];
if (i%prime[j]==)
{
mu[i*prime[j]]=;
}
}
}
}
qword solve(int a,int b)
{
int l=min(a,b);
int i,j;
int ls,lt;
qword ret=;
for (i=,ls=;i<=l;i=ls+)
{
ls=min((a/(a/i)),(b/(b/i)));
ret+=(qword) (sum[ls]-sum[i-])*(a/i)*(b/i);
}
return ret;
}
int main()
{
int nn;
freopen("input.txt","r",stdin);
init();
scanf("%d",&nn);
int a,b,c,d,n;
qword ans;
int i,j;
for (i=;i<MAXN;i++)sum[i]=sum[i-]+mu[i];
/* for (i=1;i<10;i++)
{
for (j=0;j<10;j++)
{
cout<<i<<" "<<j<<" "<<solve(i,j)<<endl;
}
}
*/
// cout<<solve(2,3);
// return 0;
while (nn--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&n);
ans=solve((a-)/n,(c-)/n)-solve((a-)/n,d/n)-solve(b/n,(c-)/n)+solve(b/n,d/n);
printf(LL "\n",ans);
}
}

BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  2. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  3. BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演

    分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...

  4. bzoj 2301: [HAOI2011]Problem b mobius反演 RE

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...

  5. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

  6. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  9. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

随机推荐

  1. Cocos2d-x3.0TestCpp文件夹笔记(二)

    3.Actions-Basic:此demo中体现ccp由Point取代 ①ActionManual:直接设置精灵的属性demo. const Color3B Color3B::RED    (255, ...

  2. PPT内嵌视频(指发布时只需要ppt一个文件即可)

    做实验时用手机拍了视频,想把视频嵌入到PPT中.只是单纯的嵌入很容易,但是我想将PPT推送给其他人时,不需要再传视频文件.搜了一下做法,可以通过flash视频格式实现.电脑为thinkpad笔记本,w ...

  3. rnqoj-99-配置魔药-dp

    比较好的题目~~ dp[j][k]: 第一个容器在第i秒和第二个容器在第j秒,所产生的最大魔力. if(num[i].t2<=j)dp[j][k]=max(dp[j][k],dp[num[i]. ...

  4. WCF - 实例与会话

    实例上下文 实例上下文是对服务实例的封装 是WCF管理服务实例生命周期的依托  一个WCF服务通过ServiceHost进行寄宿 开启服务后当接收到请求 则会判断当前是否存在实例上下文 如果存在 则通 ...

  5. mongnodb 启动脚本

    开始用mongodb建立一套监控体系,安装解压即可.附上编写的mongodb启动管理脚本. 建议 mkdir sbin 目录,放到sbin目录下.废话少说,代码如下: #!/bin/bash MONG ...

  6. Linux学习笔记总结--memcached配置

    Memcached是一个高性能的分布式的内存对象缓存系统,通过在内存里维护一个统一的巨大的hash表,它能够用来存储各种格式的数据,包括图像.视频.文件以及数据库检索的结果等.简单的说就是将数据调用到 ...

  7. 1个小时学会ReactiveCocoa基本使用

    来源:朱凯奇 链接:http://www.jianshu.com/p/5d966074741a 1.ReactiveCocoa简介 ReactiveCocoa(简称为RAC),是由Github开源的一 ...

  8. oracle常用数据类型

    oracle中常用数据类型分为三大类:

  9. PGsql解决时差24H

    SELECT sa_ed_time, sa_st_time, case when sa_ed_time > sa_st_time then extract(EPOCH FROM (sa_ed_t ...

  10. Oracle常用几种Sql用法

    前几天客户提出一个月报,经过了解需求及公式等过程长达20小时,总算基本模型出来了,贴出来啥晒,对于我这种菜鸟来说也算小有提高,虽然Sql语句不是很庞大,但是里面涉及到了几种算法,个人觉得还是经常能用到 ...