2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 1007  Solved: 415
[Submit][Status]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

 
mobius反演,与“能量采集”不同的是,这道题如果不加一点优化的话,是一定会TLE的。然后考虑优化:
  ans+=segma(mu[i]*(a/i)*(b/i))
由于对于一个给定的区间[l,r], a/l=a/r   b/l=b/r,可以对对这个区间统一处理。
  ans+=segma((sum[r]-sum[l-1])*(a/l)*(n/l))
所以令l=i,这里要记一下
  a/(a/i)==r+1
所以剩下的就可以随便搞一下了。
 
 
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
#ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif
typedef long long qword;
#define MAXN 100000
int prime[MAXN/];
bool pflag[MAXN];
int topp=-;
int mu[MAXN];
int sum[MAXN];
void init()
{
int i,j;
mu[]=;
for (i=;i<MAXN;i++)
{
if (!pflag[i])
{
prime[++topp]=i;
mu[i]=-;
}
for (j=;j<=topp&&prime[j]*i<MAXN;j++)
{
pflag[i*prime[j]]=true;
mu[i*prime[j]]=-mu[i];
if (i%prime[j]==)
{
mu[i*prime[j]]=;
}
}
}
}
qword solve(int a,int b)
{
int l=min(a,b);
int i,j;
int ls,lt;
qword ret=;
for (i=,ls=;i<=l;i=ls+)
{
ls=min((a/(a/i)),(b/(b/i)));
ret+=(qword) (sum[ls]-sum[i-])*(a/i)*(b/i);
}
return ret;
}
int main()
{
int nn;
freopen("input.txt","r",stdin);
init();
scanf("%d",&nn);
int a,b,c,d,n;
qword ans;
int i,j;
for (i=;i<MAXN;i++)sum[i]=sum[i-]+mu[i];
/* for (i=1;i<10;i++)
{
for (j=0;j<10;j++)
{
cout<<i<<" "<<j<<" "<<solve(i,j)<<endl;
}
}
*/
// cout<<solve(2,3);
// return 0;
while (nn--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&n);
ans=solve((a-)/n,(c-)/n)-solve((a-)/n,d/n)-solve(b/n,(c-)/n)+solve(b/n,d/n);
printf(LL "\n",ans);
}
}

BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  2. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  3. BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演

    分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...

  4. bzoj 2301: [HAOI2011]Problem b mobius反演 RE

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...

  5. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

  6. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  9. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

随机推荐

  1. UVA10518 - How Many Calls?(矩阵高速幂)

    UVA10518 - How Many Calls?(矩阵高速幂) 题目链接 题目大意:给你fibonacci数列怎么求的.然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用 ...

  2. DataGrid缓冲加载数据

    当datagrid的滚动条拉到4/3的时候去加载数据.. public MainWindow() { InitializeComponent(); ; i <= ; i++) { Class1 ...

  3. java数组 数组工具类Arrays

    一.数组 1.java有严格的数据类型限制,一个数组只能声明一个数据类型,存放同一种数据类型. 2.虽然只能存放一种数据类型,假设A , 如果数据类型B 继承A,依然能存放进入数组. 3.数组的初始化 ...

  4. 浮动闭合方案:clearfix

    1 ;clear:both;visibility:hidden} .clearfix{*+height:1%;} 2 .clearfix{overflow:auto;_height:1%} 3 ;}

  5. XPath操作XML文档

    NET框架下的Sytem.Xml.XPath命名空间提供了一系列的类,允许应用XPath数据模式查询和展示XML文档数据. 3.1XPath介绍 主要的目的是在xml1.0和1.1文档节点树种定位节点 ...

  6. 关于js当中一些糟糕的特性

    首先,不可否认,js是一门具有许多优秀特性的弱类型语言,但是这门语言在设计之初就投入了工程实践,没有经历严格的实验室测试,以致力于它是如此的粗糙,在相当长的一段时间很不受开发者待见,被视为一门玩具性的 ...

  7. c#中string.trimstart() 和string.trimend() 的用法

    trim(),trimstart(),trimend()这样写是去掉空格,trimstart(a)是去掉字符串开始包含char[] a的字符,trimend同trimstart. 例:char[] a ...

  8. 如何写robots.txt?

    robin 发表在 八月 2, 2006 在国内,网站管理者似乎对robots.txt并没有引起多大重视,应一些朋友之请求,今天想通过这篇文章来简单谈一下robots.txt的写作. robots.t ...

  9. Mysql DB2等数据库分页的实现

    一.Mysql的分页 (一).MySQL分页的实现,使用关键字:Limit    语法:select * from tableName Limit A,B; 注释:tableName:表名 A:查询的 ...

  10. linux下安装mysql5.6(官方文档)

    Using the MySQL Yum Repository  /  Installing MySQL on Linux Using the MySQL Yum Repository Chapter ...