1、概述

在 Kubernetes 中,hostPort 是一种用于将主机上的特定端口映射到运行在 Pod 内部容器的端口的配置选项。通过使用 hostPort,你可以在主机上暴露容器的服务,从而允许外部网络通过主机的 IP 地址和指定的端口访问容器内的应用程序。如:

apiVersion: apps/v1
kind: Deployment
metadata:
name: tomcat-v1-deployment
spec:
replicas: 2
selector:
matchLabels:
app: tomcat-v1
template:
metadata:
labels:
app: tomcat-v1
spec:
containers:
- name: tomcat
image: tomcat
ports:
- containerPort: 8080
hostPort: 9000

注意 1:hostPort 与 NodePort 的区别是,NodePort 服务默认是把请求转发到随机的一个运行的 Pod 上,而 hostPort 是直接转发到本 Node 上的指定 Pod。

一个 Node 只能启动一个 hostPort,所以最初是用于把守护进程集(DaemonSets)部署到每个 Node (确保一个 Node 只有一个 hostPort )。如下图所示,3个 Node 上部署4个带 hostPort 的 Pod,会有一个不成功。

即便是3个 Node 上部署3个带 hostPort 的 Pod 滚动升级时也会有问题,所以使用 hostPort 的服务在升级的时候一定要保障先停掉旧版本的 Pod 实例再启动新版本的 Pod 实例,服务升级这块内容配置详情可以参见 《Kubernetes应用编排与管理 —— Deployment升级策略》这篇博文。

2、hostPort 与 hostNetwork 的异同

讲到 hostPort 就不得不提 hostNetwork。hostNetwork 也是一种用于将主机上的特定端口映射到运行在 Pod 内部容器的端口的配置选项,对于客户端来说这两种访问方式都是一样的,但是它们的原理却大不相同,下面说一下 hostPort 与 hostNetwork 的异同。

相同点:

  1. hostPort 与 hostNetwork 本质上都是终端用户能访问到pod中的业务;
  2. 访问的时候,只能用 pod所有宿主机IP + 容器端口或 hostport 端口进行访问。

不同点:

  1. 网络地址空间不同。hostport使用CNI分配的地址,hostNetwork使用宿主机网络地址空间;
  2. 宿主机端口生成。hostport宿主机不生成端口,hostNetwork宿主机生成端口;
  3. hostport通过 iptables 防火墙的 nat 表进行转发,hostNetwork 直接通过主机端口到容器中;
  4. 定义的路径不同。deploy.spec.template.spec.containers.ports.hostPort 与 deploy.spec.template.spec.hostNetwork;
  5. 优先级不同,hostNetwork 高于 hostPort。

hostPort 截图:

hostNetwork 截图:

3、hostPort 原理

(1)示例环境

当前示例Kubernetes集群节点信息如下(共五个节点,k8s版本为1.21.14):

[root@master1 ~]# kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
master1 Ready control-plane,master 19d v1.21.14 10.20.32.201 <none> Kylin Linux Advanced Server V10 (Lance) 4.19.90-52.22.v2207.ky10.x86_64 docker://20.10.9
master2 Ready control-plane,master 19d v1.21.14 10.20.32.202 <none> Kylin Linux Advanced Server V10 (Lance) 4.19.90-52.22.v2207.ky10.x86_64 docker://20.10.9
master3 Ready control-plane,master 19d v1.21.14 10.20.32.203 <none> Kylin Linux Advanced Server V10 (Lance) 4.19.90-52.22.v2207.ky10.x86_64 docker://20.10.9
worker1 Ready worker 19d v1.21.14 10.20.32.204 <none> Kylin Linux Advanced Server V10 (Lance) 4.19.90-52.22.v2207.ky10.x86_64 docker://20.10.9
worker2 Ready worker 19d v1.21.14 10.20.32.205 <none> Kylin Linux Advanced Server V10 (Lance) 4.19.90-52.22.v2207.ky10.x86_64 docker://20.10.9

当前集群kube-proxy模式为ipvs:

[root@master1 ~]# kubectl get configmaps -n=kube-system kube-proxy -o yaml|grep mode
mode: ipvs

(2)示例

启动一个 Pod 示例,其是使用 Go 语言来创建一个简单的 HTTP 服务器,使用 hostPort 将主机上的 80 端口映射到运行在 Pod 内部的容器端口上,其调度到 woker1 (10.20.32.204)节点上。

客户端通过主机 ip:hostPort 访问服务能够正常响应。

(3)原理解析

3.1)节点外客户端访问当前节点容器

现在连接到 worker1 机器,由于当前集群 kube-proxy 模式选用的是 ipvs,所以当外部客户端的访问当前节点的容器时,流量包通常会先后经过以下链:

  1. PREROUTING 链(iptables): 外部流量进入主机后,首先经过 PREROUTING 链(位于 nat 表),这是网络地址转换(NAT)处理的第一个步骤。你可以在 PREROUTING 链中创建规则,以便将流量导入其他自定义的 iptables 链或 ipvs 转发路径。

  2. IPVS 转发路径: 如果你使用了 ipvs 来进行负载均衡,外部流量可能会直接进入 ipvs 的负载均衡路径。这是流量被转发到正确的后端 Pod 的地方,绕过了 iptables 的后续处理。

  3. FORWARD 链(iptables): 如果流量需要在主机内部进行转发,它会进入 FORWARD 链(位于 filter 表),在这里可以进行进一步的处理,例如网络策略、防火墙规则等。

  4. POSTROUTING 链(iptables): 流量最终经过 POSTROUTING 链(位于 nat 表),这是 NAT 处理的最后一步。你可以在这里进行出站流量的地址转换等处理。

总结起来,流量通常会按照 PREROUTING -> IPVS -> FORWARD -> POSTROUTING 的顺序进行处理。但是,实际流量的经过路径可能会受到你的配置和网络堆栈的影响,所以在进行流量管理和路由时,请务必仔细考虑你的需求和设置。

3.1.1)分析 PREROUTING 链规则

外部流量进来后首先经过PREROUTING 链,通过规则匹配只要是访问当前节点的80端口,都会进行dnat转换,转换成 PodIP:Pod端口。

3.1.2)分析 IPVS 规则

执行 ipvsadm -L -n 命令查看当前节点 IPVS 规则,在规则中没有查找到 10.20.32.204:80 匹配项。

3.1.3)分析 FORWARD 链规则规则

无 CNI-HOSTPORT 相关规则。

3.1.4)分析 POSTROUTING 链规则

CNI-HOSTPORT_MASQ规则在最前面,并且无需源地址转换。

3.1.5) 抓包验证

进入示例容器网络命令空间:

[root@worker1 ~]# docker ps|grep http-request-printer
267f462be8b6 25585bdfb0f7 "/usr/local/bin/pilo…" About an hour ago Up About an hour k8s_istio-proxy_http-request-printer-v1-856959f7d9-kxx6g_tracing_fa8a0a82-e233-4757-ba28-f16eb2d311f4_0
e60564d42fc6 6246a84777e8 "./http_request_prin…" About an hour ago Up About an hour k8s_container-rr19ea_http-request-printer-v1-856959f7d9-kxx6g_tracing_fa8a0a82-e233-4757-ba28-f16eb2d311f4_0
432a811e77e1 10.20.32.201:80/cloudbases/pause:3.4.1 "/pause" About an hour ago Up About an hour k8s_POD_http-request-printer-v1-856959f7d9-kxx6g_tracing_fa8a0a82-e233-4757-ba28-f16eb2d311f4_0
[root@worker1 ~]# nsenter -n -t 308222
nsenter: cannot open /proc/308222/ns/net: No such file or directory
[root@worker1 ~]# docker ps|grep http-request-printer
267f462be8b6 25585bdfb0f7 "/usr/local/bin/pilo…" About an hour ago Up About an hour k8s_istio-proxy_http-request-printer-v1-856959f7d9-kxx6g_tracing_fa8a0a82-e233-4757-ba28-f16eb2d311f4_0
e60564d42fc6 6246a84777e8 "./http_request_prin…" About an hour ago Up About an hour k8s_container-rr19ea_http-request-printer-v1-856959f7d9-kxx6g_tracing_fa8a0a82-e233-4757-ba28-f16eb2d311f4_0
432a811e77e1 10.20.32.201:80/cloudbases/pause:3.4.1 "/pause" About an hour ago Up About an hour k8s_POD_http-request-printer-v1-856959f7d9-kxx6g_tracing_fa8a0a82-e233-4757-ba28-f16eb2d311f4_0
[root@worker1 ~]# docker inspect --format "{{.State.Pid}}" 267f462be8b6
145003
[root@worker1 ~]# nsenter -n -t 145003
[root@worker1 ~]# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
inet 10.233.1.133 netmask 255.255.255.0 broadcast 10.233.1.255
ether 2e:2c:82:08:eb:8e txqueuelen 0 (Ethernet)
RX packets 15372 bytes 9093248 (8.6 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 14493 bytes 23701690 (22.6 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 8483 bytes 37018407 (35.3 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8483 bytes 37018407 (35.3 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 [root@worker1 ~]#

抓包来确定进入容器中的包没有进行源地址转换(抓包时客户端 10.20.32.201 通过 curl http://10.20.32.204:80 命令访问此服务)。

[root@worker1 ~]# tcpdump -i eth0 host 10.233.1.133 and dst port 80 -w svc_host_port.pcap
dropped privs to tcpdump
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
^C6 packets captured
6 packets received by filter
0 packets dropped by kernel

将抓的包下载到本地通过并使用 wireshark 软件进行分析,可以看到当节点外客户端通过 hostPort 访问容器时,进入容器中的包没有进行源地址转换。

3.2)节点上客户端访问当前节点容器

现在连接到 worker1 机器,由于当前集群 kube-proxy 模式选用的是 ipvs,所以当当前节点客户端的访问当前节点的容器时,流量包通常会先后经过以下链:

OUTPUT -> IPVS  -> POSTROUTING 

3.2.1)分析 OUTPUT 链规则

当前节点流量先经过OUTPUT 链,通过规则匹配只要是访问当前节点的80端口,都会进行dnat转换,转换成 PodIP:Pod端口,除了源地址是PodIp或127.0.0.1时会对数据包打标签,其他规则和3.1.1中类似,这里不再赘余。

3.2.2)分析 IPVS 规则

执行 ipvsadm -L -n 命令查看当前节点 IPVS 规则,在规则中没有查找到 10.20.32.204:80 匹配项。

3.2.3)分析 POSTROUTING 链规则

CNI-HOSTPORT_MASQ规则在最前面,如果源地址是PodIp或者127.0.0.1需要源地址转换。

注意 1:没太想明白Pod是互通的,为什么源PodIP还需要进行源地址转换。

3.2.4) 路由匹配将流量发送到 Pod 里面。

4、总结

在 Kubernetes 中,hostPort 是一种用于将主机上的特定端口映射到运行在 Pod 内部容器的端口的配置选项。通过使用 hostPort,你可以在主机上暴露容器的服务,从而允许外部网络通过主机的 IP 地址和指定的端口访问容器内的应用程序。

一个 Node 只能启动一个 hostPort,所以最初是用于把守护进程集(DaemonSets)部署到每个 Node (确保一个 Node 只有一个 hostPort ),或者部署固定在特定节点的应用程序(比如 Nginx Ingress Controller 通常以高可用形式部署在固定三个节点上面)。

按照官方文档说的,除非绝对必要,否则不要为 Pod 指定 hostPort。 将 Pod 绑定到 hostPort 时,它会限制 Pod 可以调度的位置数,因为每个 <hostIP, hostPort, protocol> 组合必须是唯一的。 如果您没有明确指定 hostIP 和 protocol,Kubernetes 将使用 0.0.0.0 作为默认 hostIP 和 TCP 作为默认 protocol,请在使用 hostPort 之前考虑使用 NodePort 服务。

参考:https://knowledge.zhaoweiguo.com/build/html/cloudnative/k8s/yamls/option_hostport

参考:hostPort 与 hostNetwork 异同

Kubernetes hostPort 使用的更多相关文章

  1. Docker Kubernetes hostPort 代理转发

    Docker Kubernetes  hostPort 代理转发 hostPort: 1. 类似docker -p 映射宿主级端口到容器. 2. 容器所在的主机暴露端口转发到指定容器中. 3. hos ...

  2. Docker 运维高级应用管理

     Docker 基本应用 1.Docker 介绍及安装 2.Docket 使用命令 3.Docker run命令参数整理 4.Docker 构建镜像 Docker Compose 高级应用 1.Doc ...

  3. 基于Kubernetes在AWS上部署Kafka时遇到的一些问题

    作者:Jack47 转载请保留作者和原文出处 欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 交代一下背景:我们的后台系统是一套使用Kafka消息队列的数据处理管线 ...

  4. kubernetes多节点部署解析

    注:以下操作均基于centos7系统. 安装ansible ansilbe可以通过yum或者pip安装,由于kubernetes-ansible用到了密码,故而还需要安装sshpass: pip in ...

  5. [经验交流] Kubernetes Nginx Ingress 安装与使用

    Ingress 介绍 Kubernetes 上部署的微服务运行在它的私有网络中, 通过Pod实例的hostPort或Service实例的NodePort可以暴露到主机端口上,便于用户访问.但这样的方法 ...

  6. Docker实践(6)—CentOS7上部署Kubernetes

    Kubernetes架构 Kubernetes的整体架构如下: Master为主控节点,上面运行apiserver,scheduler,controller-manager等组件.Minion相当于工 ...

  7. CoreOS实践(2)—在coreos上安装Kubernetes

    下载kubernetes sudo mkdir -p /opt/bin sudo wget https://storage.googleapis.com/kubernetes/binaries.tar ...

  8. 基于kubernetes构建Docker集群管理详解-转

    http://blog.liuts.com/post/247/ 一.前言        Kubernetes 是Google开源的容器集群管理系统,基于Docker构建一个容器的调度服务,提供资源调度 ...

  9. kubernetes集群部署

    鉴于Docker如此火爆,Google推出kubernetes管理docker集群,不少人估计会进行尝试.kubernetes得到了很多大公司的支持,kubernetes集群部署工具也集成了gce,c ...

  10. Docker系列(八)Kubernetes介绍

    Kubernetes组件功能图   各组件说明: 节点 节点在Kubernetes由虚拟机或者实体机表示,常称为Minion,即从属主机.当一个节点加入到Kubernetes系统中时,它将会创建一个数 ...

随机推荐

  1. 2022-02-02:最接近的二叉搜索树值 II。 给定一个不为空的二叉搜索树和一个目标值 target,请在该二叉搜索树中找到最接近目标值 target 的 k 个值。 注意: 给定的目标值 ta

    2022-02-02:最接近的二叉搜索树值 II. 给定一个不为空的二叉搜索树和一个目标值 target,请在该二叉搜索树中找到最接近目标值 target 的 k 个值. 注意: 给定的目标值 tar ...

  2. 为什么 GPU 更适用于时域算法,而 CPU 更适用于频域算法?

    对于懂电脑的人来讲,他们可以简单地区分出电脑的GPU和CPU的应用范畴及其优势,而今天我们要讨论的问题是"为什么 GPU 更适用于时域算法,而 CPU 更适用于频域算法?"在讨论这 ...

  3. Android Studio格式化代码

    有时候代码写来老师乱七八糟,手动格式化讷太浪费时间,且格式化不公正,最后当然使用ide自带的快捷键了 找到导航中的Code 下的 Reformat Code ; 看提示知道使用快捷键 就是Ctrl + ...

  4. iOS气泡提示工具BubblePopup的使用

      在平时的开发中,通常新手引导页或功能提示页会出现气泡弹窗来做提示.如果遇到了这类功能通常需要花费一定的精力来写这么一个工具的,这里写了一个气泡弹窗工具,希望能帮你提升一些开发效率.   使用方法 ...

  5. ChatGPT教我用200行代码写一个简版Vue框架 - OpenTiny

    AI 是未来最好的老师 最近,我正在准备一份关于 Vue 基础的学习材料.期间我突发奇想:能否利用现在热门的 ChatGPT 帮我创建学习内容?其实 Vue 本身不难学,特别是基础用法,但是,如果你想 ...

  6. Redis6 的安装

    安装网址 ‍ Redis 官方网站 Redis 中文官方网站 http://redis.io http://redis.cn/ ‍ 安装版本 ‍ 6.2.1 for Linux(redis-6.2.1 ...

  7. Cause: org.apache.ibatis.builder.BuilderException: Ambiguous collection type for property 'emps'. You must specify 'javaType' or 'resultMap'

    错误原因 这个错误通常表示在解析 Mybatis 映射文件(Mapper XML)时出现了问题,可能的原因有两个: 集合属性缺少 javaType 或 resultMap 属性:该错误信息显示了 &q ...

  8. 自然语言处理 Paddle NLP - 预训练模型产业实践课-理论

    模型压缩:理论基础 模型压缩基本方法分为三类: 量化 裁剪 蒸馏 量化 裁剪 绿线:随机裁剪 30% 已经扛不住了 蓝线:60% 还不错 蒸馏 蒸馏任务与原来的学习任务同时进行. 对于没有标注的数据, ...

  9. Kurator v0.4.0版本更新4大内容,满足多云环境的复杂需求

    摘要:在最新发布的 v0.4.0 版本中,Kurator 进一步丰富了分布式云原生场景下的应用统一管理能力,以便更好地满足多云环境的复杂需求. 本文分享自华为云社区<Kurator v0.4.0 ...

  10. uniapp学习(二)

    easycom自动导入自定义组件 目录下 components / MyItem /MyItem.vue <template> <view> <view class=&q ...