项目介绍

YoloDotNet v2.1 是一个基于 C# 和 .NET 8 的实时物体检测框架,专为图像和视频中的物体检测而设计。它集成了 Yolov8 ~ Yolov11 模型,通过 ML.NET 和 ONNX 运行时实现高效的物体检测,并支持 GPU 加速(使用 CUDA)。YoloDotNet 不仅支持传统的物体检测,还涵盖了分类、OBB 检测、分割和姿态估计等多种功能,适用于各种复杂的视觉任务。

项目技术分析

YoloDotNet 2.1 现已推出,比以往任何时候都更强大!此版本建立在之前的“Speed Demon”v2.0 更新的基础上,并添加了一些令人兴奋的新功能,同时保持一切顺利。与旧版本的兼容性已得到保证,并且进行了一些调整以获得更好的对象检测性能。查看新增功能:

  • Yolov11 支持:最新、最出色的对象检测模型的支持,为用户提供了更先进的物体检测能力。
  • Yolov9 的向后兼容性:现在您可以在 Yolov8-v11 版本之间切换。
  • 小优化:为了更快地检测对象,这里和那里有一些调整,速度越快越好!
  • OnnxRuntime 更新:现在支持 CUDA 12.x 和 cuDNN 9.x。GPU 肯定会对这个感到满意!

YoloDotNet v2.1 – 更快、更智能,并包含更多 Yolo 优点;

项目及技术应用场景

YoloDotNet v2.1 的应用场景非常广泛,包括但不限于:

  • 智能监控:实时检测监控视频中的异常行为或物体。
  • 自动驾驶:实时识别道路上的行人、车辆和其他障碍物。
  • 工业检测:自动化检测生产线上的产品缺陷或异常。
  • 医疗影像分析:辅助医生快速识别医学影像中的病变区域。
  • 体育分析:实时分析运动员的动作和姿态,用于训练和比赛分析。

项目特点

YoloDotNet v2.1 具有以下显著特点:

  • 高性能:通过多项优化措施,YoloDotNet v2.1 在速度和效率上达到了新的高度,尤其在 GPU 加速下表现出色。
  • 多功能:支持分类、物体检测、OBB 检测、分割和姿态估计等多种视觉任务,满足不同应用需求。
  • 易用性:提供了简洁的 API 和丰富的示例代码,方便开发者快速上手。
  • 跨平台:基于 .NET 8,支持 Windows、Linux 和 macOS 等多种操作系统。
  • 开源免费:完全开源,用户可以自由使用、修改和分发。

结语

YoloDotNet v2.1 不仅在技术上实现了重大突破,还为用户提供了强大的工具来应对各种复杂的视觉任务。无论你是开发者、研究人员还是企业用户,YoloDotNet v2.1 都能为你提供高效、可靠的解决方案。立即体验 YoloDotNet v2.1,开启你的智能视觉之旅!


项目地址YoloDotNet GitHub

安装指南

dotnet add package YoloDotNet

注意:使用 GPU 加速需要安装 CUDA 和 cuDNN,请确保 ONNX 运行时与这些组件的兼容性。

项目的包含一个示例项目,启动文件位于 ConsoleDemo/Program.cs。该文件包含了项目的入口点,用于启动和运行 YoloDotNet 的控制台应用程序。

Program.cs 文件内容概述
using System;
using YoloDotNet; namespace ConsoleDemo
{
class Program
{
static void Main(string[] args)
{
// 初始化 Yolo 对象
var yolo = new Yolo(@"path\to\model.onnx"); // 加载图像
var image = Image.Load<Rgba32>(@"path\to\image.jpg"); // 运行对象检测
var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7); // 处理结果
image.Draw(results);
image.Save(@"path\to\save\image.jpg");
}
}
}
启动文件功能
  • 初始化 Yolo 对象: 加载 ONNX 模型。
  • 加载图像: 使用 SixLabors.ImageSharp 加载图像。
  • 运行对象检测: 调用 Yolo 对象的 RunObjectDetection 方法进行对象检测。
  • 处理结果: 在图像上绘制检测结果并保存。

3. 项目配置文件介绍

YoloDotNet 项目没有传统的配置文件(如 .config.yaml 文件),但可以通过代码中的配置选项来调整项目的行为。

配置选项示例
var yolo = new Yolo(new YoloOptions
{
OnnxModel = @"path\to\model.onnx",
ModelType = ModelType.ObjectDetection,
Cuda = true,
GpuId = 0,
PrimeGpu = false
});
配置选项说明
  • OnnxModel: 指定 ONNX 模型的路径。
  • ModelType: 指定模型类型,如 ObjectDetection
  • Cuda: 是否启用 CUDA 加速。
  • GpuId: 指定使用的 GPU ID。
  • PrimeGpu: 是否预分配 GPU 内存。

通过这些配置选项,可以在代码中灵活地调整 YoloDotNet 的行为,以适应不同的应用场景。

YoloDotNet v2.1:实时物体检测的利器的更多相关文章

  1. Yolo:实时目标检测实战(上)

    Yolo:实时目标检测实战(上) YOLO:Real-Time Object Detection 你只看一次(YOLO)是一个最先进的实时物体检测系统.在帕斯卡泰坦X上,它以每秒30帧的速度处理图像, ...

  2. 手把手教你用深度学习做物体检测(五):YOLOv1介绍

    "之前写物体检测系列文章的时候说过,关于YOLO算法,会在后续的文章中介绍,然而,由于YOLO历经3个版本,其论文也有3篇,想全面的讲述清楚还是太难了,本周终于能够抽出时间写一些YOLO算法 ...

  3. 快速上手百度大脑EasyDL专业版·物体检测模型(附代码)

    作者:才能我浪费991.    简介:1.1.    什么是EasyDL专业版EasyDL专业版是EasyDL在2019年10月下旬全新推出的针对AI初学者或者AI专业工程师的企业用户及开发者推出的A ...

  4. Tensorflow物体检测(Object Detection)API的使用

    Tensorflow在更新1.2版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(看这里),大大降低了吾等调包侠的开发难度,无论是fine-tuning还是该网络结构都方便了不少.这里 ...

  5. 手把手教你用深度学习做物体检测(六):YOLOv2介绍

    本文接着上一篇<手把手教你用深度学习做物体检测(五):YOLOv1介绍>文章,介绍YOLOv2在v1上的改进.有些性能度量指标术语看不懂没关系,后续会有通俗易懂的关于性能度量指标的介绍文章 ...

  6. 使用SlimYOLOv3框架实现实时目标检测

    介绍 人类可以在几毫秒内在我们的视线中挑选出物体.事实上,你现在就环顾四周,你将观察到周围环境并快速检测到存在的物体,并且把目光回到我们这篇文章来.大概需要多长时间? 这就是实时目标检测.如果我们能让 ...

  7. 【YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)含源码

    前言 前面我们给大家介绍了基于LabVIEW+YOLOv3/YOLOv4的物体识别(对象检测),今天接着上次的内容再来看看YOLOv5.本次主要是和大家分享使用LabVIEW快速实现yolov5的物体 ...

  8. 【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)

    前言 上一篇博客给大家介绍了LabVIEW开放神经网络交互工具包[ONNX],今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5. 以下是YOLOv ...

  9. OpenCV学习 物体检测 人脸识别 填充颜色

    介绍 OpenCV是开源计算机视觉和机器学习库.包含成千上万优化过的算法.项目地址:http://opencv.org/about.html.官方文档:http://docs.opencv.org/m ...

  10. opencv,关于物体检测

    关于物体检测 环境:opencv 2.4.11+vs2013 参考: http://www.cnblogs.com/tornadomeet/archive/2012/06/02/2531705.htm ...

随机推荐

  1. appium python 点击坐标 tap

    appium python 点击坐标 tap 有时候定位元素的时候,你使出了十八班武艺还是定位不到,怎么办呢?(面试经常会问)那就拿出绝招:点元素所在位置的坐标 tap用法 1.tap是模拟手指点击, ...

  2. 2、Git之Windows版本的安装

    2.1.下载Git 官网下载地址:https://git-scm.com/download/ 最初,Git 是用于管理 Linux 社区的代码,所以在很长的一段时间内,Git 只能安装在 Linux ...

  3. Asp.Net Core之Identity源码学习

    什么是Identity ASP.NET Identity是构建核心 Web 应用程序(ASP.NET.登录和用户数据)的成员系统.ASP.NET核心标识允许您向应用程序添加登录功能,并可以轻松自定义有 ...

  4. 【转载】 tf.image.sample_distorted_bounding_box (为图像生成单个随机变形的边界框)

    原文地址: https://blog.csdn.net/tz_zs/article/details/77920116 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上 ...

  5. jax框架的 Pallas 方式的GPU扩展不可用

    说下深度学习框架的GPU扩展功能的部分,也就是使用个人定制化的GPU代码编写方式来为深度学习框架做扩展. 深度学习框架本身就是一种对GPU功能的一种封装和调用,但是由于太high-level,因此就会 ...

  6. 第7期(大连站)—— OpenHarmony城市技术论坛:边缘智能

    PS. 为了进一步的推动国产信息化,国内的各个高校也是踊跃参与呢.

  7. Ubuntu18.04 环境下 解决VScode中空格长度减小的问题

       问题:   Ubuntu下安装vscode后发现空格特别小,只有正常空格的一半大小 ======================================================= ...

  8. baselines算法库common/retro_wrappers.py模块分析

    retro_wrappers.py模块代码: from collections import deque import cv2 cv2.ocl.setUseOpenCL(False) from .at ...

  9. JUC高并发编程(三)之模拟接口压力测试

    1.背景 接口压力测试是产品上线前很重要的一项测试,我们可以使用很多开源工具测试, 当然我们也可以简单的写一个多线程并发测试案例 2.代码 controller接口 /** * 查询订单 * * @r ...

  10. java关于二维数组的操作

    代码: ''' package tests; public class Yanghui { public static void main(String[] args) { //声明二维数组的三种方式 ...