[ABC261Ex] Game on Graph
Problem Statement
We have a directed graph with \(N\) vertices and \(M\) edges. Edge \(i\) is directed from Vertex \(A_i\) to \(B_i\).and has a weight of \(C_i\).
Initially, there is a piece on Vertex \(v\). Takahashi and Aoki will play a game where they alternate turns moving the piece as follows:
- If there is no edge that goes from the vertex on which the piece is placed, end the game.
- If there are edges that go from the vertex on which the piece is placed, choose one of those edges and move the piece along that edge.
Takahashi goes first. Takahashi tries to minimize the total weight of the edges traversed by the piece, and Aoki tries to maximize it.
More formally, their objectives are as follows.
Takahashi gives the first priority to ending the game in a finite number of moves. If this is possible, he tries to minimize the total weight of the edges traversed by the piece.
Aoki gives the first priority to preventing the game from ending in a finite number of moves. If this is impossible, he tries to maximize the total weight of the edges traversed by the piece.
(If the piece traverses the same edge multiple times, the weight is added that number of times.)
Determine whether the game ends in a finite number of moves when both players play optimally. If it ends, find the total weight of the edges traversed by the piece.
Constraints
- \(1≤N≤2×10^5\)
- \(0≤M≤2×10^5\)
- \(1\le v≤N\)
- \(1≤A_i,B_i≤N\)
- There is no multi-edges. That is, \((A_i,B_i)\ne (A_j,B_j)\) for \(i\ne j\)
- There is no self-loops. That is, \(A_i\ne B_i\).
- \(0≤C≤10 ^9\)
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
\(N\) \(M\) \(v\)
\(A_1\) \(B_1\) \(C_1\)
\(A_2\) \(B_2\) \(C_2\)
⋮
\(A_M\) \(B_M\) \(C_M\)
Output
If the game does not end in a finite number of moves when both players play optimally, print INFINITY.
If the game ends in a finite number of moves, print the total weight of the edges traversed by the piece.
Sample Input 1
7 6 1
1 2 1
1 3 10
2 4 100
2 5 102
3 6 20
3 7 30
Sample Output 1
40
First, Takahashi will move the piece to Vertex \(3\). Next, Aoki will move the piece to Vertex \(7\), and the game will end.
The total weight of the edges traversed by the piece will be \(10+30=40\).
Sample Input 2
3 6 3
1 2 1
2 1 2
2 3 3
3 2 4
3 1 5
1 3 6
Sample Output 2
INFINITY
The game will not end in a finite number of moves.
Sample Input 3
4 4 1
1 2 1
2 3 1
3 1 1
2 4 1
Sample Output 3
5
The piece will go \(1→2→3→1→2→4\).
假设图是一个有向无环图,那么直接使用 DAG 上 dp 即可。轮到 Alice 时在所有后继节点中取最小值。轮到 Bob 时在所有后继节点中取最大值。
那么如果是有环呢?有环的 min/max dp 的经典解法是跑最短路。把无后继的节点入堆,图建成反图,跑 dij 就行了。
但是这个 dp 有时候取最大值,有时候取最小值,好像很难处理。
首先如果轮到 Alice 的话,直接取最小值。因为 dij 的堆用小根堆,所以Alice的dp值直接跑dij是正确的。
但是如果轮到 Bob,他的值不像 Alice,需要所有的后继节点更新后,才能更新 Bob 的dp值。而且他是希望可以在博弈中跑出死循环的,所以如果不是所有的后继节点都更新得到,他就不更新。我们可以使用类似拓扑的方式处理。记录入度,然后松弛时入度减一。
那么想清楚代码就很好写了。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=2e5+5;
struct node{
int v,k;
LL w;
bool operator<(const node&n)const{
return w>n.w;
}
};
struct edge{
int v,nxt,w;
}e[N<<1];
int hd[N],n,m,s,u,v,w,e_num,in[N],vis[N][2];
LL dis[N][2];
priority_queue<node>q;
void add_edge(int u,int v,int w)
{
e[++e_num]=(edge){v,hd[u],w};
hd[u]=e_num;
}
void dijkstra()
{
for(int i=1;i<=n;i++)
{
if(!in[i])
{
q.push((node){i,0,0});
q.push((node){i,1,0});
}
else
dis[i][0]=0x7f7f7f7f7f7f7f7f;
}
// printf("%d\n",dis[1][0]);
while(!q.empty())
{
int v=q.top().v,k=q.top().k;
// printf("%d %d %d\n",v,k,dis[v][k]);
q.pop();
if(vis[v][k])
continue;
if(k)
{
for(int i=hd[v];i;i=e[i].nxt)
{
// if(v==2)
// printf("%d %d %d\n",e[i].v,dis[v][1]+e[i].w,dis[e[i].v][0]);
if(dis[v][1]+e[i].w<dis[e[i].v][0])
{
dis[e[i].v][0]=dis[v][1]+e[i].w;
q.push((node){e[i].v,0,dis[e[i].v][0]});
}
}
}
else
{
for(int i=hd[v];i;i=e[i].nxt)
{
in[e[i].v]--;
if(dis[v][0]+e[i].w>dis[e[i].v][1])
{
dis[e[i].v][1]=dis[v][0]+e[i].w;
// q.push((node){e[i].v,1,-dis[e[i].v][1]});
}
if(!in[e[i].v])
q.push((node){e[i].v,1,dis[e[i].v][1]});
}
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w),in[u]++;
add_edge(v,u,w);
}
dijkstra();
if(dis[s][0]>1e18)
printf("INFINITY");
else
printf("%lld",dis[s][0]);
}
[ABC261Ex] Game on Graph的更多相关文章
- [开发笔记] Graph Databases on developing
TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Graph Valid Tree 图验证树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Clone Graph 无向图的复制
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
- 讲座:Influence maximization on big social graph
Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...
- zabbix利用api批量添加item,并且批量配置添加graph
关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...
- Theano Graph Structure
Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...
- 纸上谈兵: 图 (graph)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 图(graph)是一种比较松散的数据结构.它有一些节点(vertice),在某些节 ...
随机推荐
- java与es8实战之二:实战前的准备工作
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是<java与es8实战>系 ...
- ATtiny88初体验(五):ADC
ATtiny88初体验(五):ADC ADC模块介绍 ATtiny88单片机包含一个10bit分辨率的ADC模块,拥有8个通道,最大采样率15kSPS,转换时间14us.ATtiny88的ADC参考电 ...
- [初学C#] 第二习题 : 快递跟踪信息查询
刚学C#, 折腾的一个小玩意. 熟悉和了解C#这门编程语言. 没有啥特殊意义 解锁技能 - System.Net 的 WebRequest等http请求 - Newtonsoft.Json 这个第三方 ...
- salesforce零基础学习(一百三十一)Validation 一次的bypass设计
本篇参考: https://admin.salesforce.com/blog/2022/how-i-solved-it-bypass-validation-rules-in-flows 背景:作为系 ...
- 「note」原根照抄
阶(multiplicative order) \(\textbf{Def.}\):\(\delta_m(a)\) 为最小的 \(n\) 使得 \(a^n\equiv 1\pmod m\),其中 \( ...
- Solution -「BZOJ 3771」Triple
Description Link. 给你一个序列,你每次可以取 \(1\sim3\) 个数然后计算和,问你对于每一种和,方案数是多少. Solution 设一个 OGF \(A(x)=\sum_{i= ...
- Harry Potter RPG_1
RPG--Harry Potter 博主最近迷上了<Harry Potter> So 我制作了一款RPG对话模拟游戏, 目前主线以进行到了分院以后: 有兴趣的小伙伴可以看看,能点个关注就更 ...
- 其它——ASCII码,Unicode和UTF-8编码
文章目录 一 ASCII码 二 非ASCII编码 三 Unicode 3.1 Unicode存在的问题 3.2 它们造成的结果是 四 UTF-8 4.1 UTF-8 特点 4.2 UTF-8 的编码规 ...
- linux常用命令(六)
用于查找系统文件的相关命令 grep find locate grep:查找文件中符号条件的字符串(关键词) 命令语法:grep [选项] 查找模式 [文件名] 选项 选项含义 -E 模式是一个可扩展 ...
- CCF PTA编程培训师资认证
考试费用: 双会员500元,任意一方单会员750元,报名考试同时成为CCF专业会员850元,非会员1000元. P/T2补考费用:双会员200元,任意一方单会员300元,非会员400元. T1补考费用 ...