基于Python语言的数据可视化工具
在数据分析中常用的图表可以使用使用 python语言的 matplotlib 和 seaborn 库选择要显示的可视化对象。
一、Matplotlib
Matplotlib 是一个 Python 的 2D绘图库,通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。
用于创建出版质量图表的绘图工具库
目的是为Python构建一个Matlab式的绘图接口
import matplotlib.pyplot as pltpyploy模块包含了常用的matplotlib API函数


figure
Matplotlib的图像均位于figure对象中
创建figure:
fig = plt.figure()
示例代码:
# 引入matplotlib包
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline #在jupyter notebook 里需要使用这一句命令
# 创建figure对象
fig = plt.figure()
运行结果:
<matplotlib.figure.Figure at 0x11a2dd7b8>
subplot
fig.add_subplot(a, b, c)
a,b 表示将fig分割成 a*b 的区域
c 表示当前选中要操作的区域,
注意:从1开始编号(不是从0开始)
plot 绘图的区域是最后一次指定subplot的位置 (jupyter notebook里不能正确显示)
示例代码:
# 指定切分区域的位置
ax1 = fig.add_subplot(2,2,1)
ax2 = fig.add_subplot(2,2,2)
ax3 = fig.add_subplot(2,2,3)
ax4 = fig.add_subplot(2,2,4)
# 在subplot上作图
random_arr = np.random.randn(100)
#print random_arr
# 默认是在最后一次使用subplot的位置上作图,但是在jupyter notebook 里可能显示有误
plt.plot(random_arr)
# 可以指定在某个或多个subplot位置上作图
# ax1 = fig.plot(random_arr)
# ax2 = fig.plot(random_arr)
# ax3 = fig.plot(random_arr)
# 显示绘图结果
plt.show()
运行结果:


直方图:hist
示例代码:
import matplotlib.pyplot as plt
import numpy as np
plt.hist(np.random.randn(100), bins=10, color='b', alpha=0.3)
plt.show()
运行结果:


散点图:scatter
示例代码:
import matplotlib.pyplot as plt
import numpy as np
# 绘制散点图
x = np.arange(50)
y = x + 5 * np.random.rand(50)
plt.scatter(x, y)
plt.show()
运行结果:


柱状图:bar
示例代码:
import matplotlib.pyplot as plt
import numpy as np
# 柱状图
x = np.arange(5)
y1, y2 = np.random.randint(1, 25, size=(2, 5))
width = 0.25
ax = plt.subplot(1,1,1)
ax.bar(x, y1, width, color='r')
ax.bar(x+width, y2, width, color='g')
ax.set_xticks(x+width)
ax.set_xticklabels(['a', 'b', 'c', 'd', 'e'])
plt.show()
运行结果:


矩阵绘图:plt.imshow()
- 混淆矩阵,三个维度的关系
示例代码:
import matplotlib.pyplot as plt
import numpy as np
# 矩阵绘图
m = np.random.rand(10,10)
print(m)
plt.imshow(m, interpolation='nearest', cmap=plt.cm.ocean)
plt.colorbar()
plt.show()
运行结果:
[[ 0.92859942 0.84162134 0.37814667 0.46401549 0.93935737 0.0344159
0.56358375 0.75977745 0.87983192 0.22818774]
[ 0.88216959 0.43369207 0.1303902 0.98446182 0.59474031 0.04414217
0.86534444 0.34919228 0.53950028 0.89165269]
[ 0.52919761 0.87408715 0.097871 0.78348534 0.09354791 0.3186
0.25978432 0.48340623 0.1107699 0.14065592]
[ 0.90834516 0.42377475 0.73042695 0.51596826 0.14154431 0.22165693
0.64705882 0.78062873 0.55036304 0.40874584]
[ 0.98853697 0.46762114 0.69973423 0.7910757 0.63700306 0.68793919
0.28685306 0.3473426 0.17011744 0.18812329]
[ 0.73688943 0.58004874 0.03146167 0.08875797 0.32930191 0.87314734
0.50757536 0.8667078 0.8423364 0.99079049]
[ 0.37660356 0.63667774 0.78111565 0.25598593 0.38437628 0.95771051
0.01922366 0.37020219 0.51020305 0.05365718]
[ 0.87588452 0.56494761 0.67320078 0.46870376 0.66139913 0.55072149
0.51328222 0.64817353 0.198525 0.18105368]
[ 0.86038137 0.55914088 0.55240021 0.15260395 0.4681218 0.28863395
0.6614597 0.69015592 0.46583629 0.15086562]
[ 0.01373772 0.30514083 0.69804049 0.5014782 0.56855904 0.14889117
0.87596848 0.29757133 0.76062891 0.03678431]]


plt.subplots()
同时返回新创建的
figure和subplot对象数组生成2行2列subplot:
fig, subplot_arr = plt.subplots(2,2)在jupyter里可以正常显示,推荐使用这种方式创建多个图表
示例代码:
import matplotlib.pyplot as plt
import numpy as np
fig, subplot_arr = plt.subplots(2,2)
# bins 为显示个数,一般小于等于数值个数
subplot_arr[1,0].hist(np.random.randn(100), bins=10, color='b', alpha=0.3)
plt.show()
运行结果:


颜色、标记、线型
- ax.plot(x, y, ‘r--’)
等价于ax.plot(x, y, linestyle=‘--’, color=‘r’)
示例代码:
import matplotlib.pyplot as plt
import numpy as np
fig, axes = plt.subplots(2)
axes[0].plot(np.random.randint(0, 100, 50), 'ro--')
# 等价
axes[1].plot(np.random.randint(0, 100, 50), color='r', linestyle='dashed', marker='o')
运行结果:
[<matplotlib.lines.Line2D at 0x11a901e80>]


- 常用的颜色、标记、线型






刻度、标签、图例
设置刻度范围
plt.xlim(), plt.ylim()
ax.set_xlim(), ax.set_ylim()
设置显示的刻度
plt.xticks(), plt.yticks()
ax.set_xticks(), ax.set_yticks()
设置刻度标签
ax.set_xticklabels(), ax.set_yticklabels()
设置坐标轴标签
ax.set_xlabel(), ax.set_ylabel()
设置标题
ax.set_title()
图例
ax.plot(label=‘legend’)
ax.legend(), plt.legend()
loc=‘best’:自动选择放置图例最佳位置
示例代码:
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots(1)
ax.plot(np.random.randn(1000).cumsum(), label='line0')
# 设置刻度
#plt.xlim([0,500])
ax.set_xlim([0, 800])
# 设置显示的刻度
#plt.xticks([0,500])
ax.set_xticks(range(0,500,100))
# 设置刻度标签
ax.set_yticklabels(['Jan', 'Feb', 'Mar'])
# 设置坐标轴标签
ax.set_xlabel('Number')
ax.set_ylabel('Month')
# 设置标题
ax.set_title('Example')
# 图例
ax.plot(np.random.randn(1000).cumsum(), label='line1')
ax.plot(np.random.randn(1000).cumsum(), label='line2')
ax.legend()
ax.legend(loc='best')
#plt.legend()
运行结果: <matplotlib.legend.Legend at 0x11a4061d0>

二、Seaborn
http://seaborn.pydata.org/index.html
Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。
Python中的一个制图工具库,可以制作出吸引人的、信息量大的统计图
在Matplotlib上构建,支持numpy和pandas的数据结构可视化。
多个内置主题及颜色主题
可视化单一变量、二维变量用于比较数据集中各变量的分布情况
可视化线性回归模型中的独立变量及不独立变量
import numpy as np
import pandas as pd
# from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
# %matplotlib inline
数据集分布可视化
单变量分布 sns.distplot()
示例代码:
# 单变量分布
x1 = np.random.normal(size=1000)
sns.distplot(x1);
x2 = np.random.randint(0, 100, 500)
sns.distplot(x2);
运行结果:


直方图 sns.distplot(kde=False)
示例代码:
# 直方图
sns.distplot(x1, bins=20, kde=False, rug=True)
运行结果:


核密度估计 sns.distplot(hist=False) 或 sns.kdeplot()
示例代码:
# 核密度估计
sns.distplot(x2, hist=False, rug=True)
运行结果: 

双变量分布
示例代码:
# 双变量分布
df_obj1 = pd.DataFrame({"x": np.random.randn(500),
"y": np.random.randn(500)})
df_obj2 = pd.DataFrame({"x": np.random.randn(500),
"y": np.random.randint(0, 100, 500)})
散布图 sns.jointplot()
示例代码:
# 散布图
sns.jointplot(x="x", y="y", data=df_obj1)
运行结果:


二维直方图 Hexbin sns.jointplot(kind=‘hex’)
示例代码:
# 二维直方图
sns.jointplot(x="x", y="y", data=df_obj1, kind="hex");
运行结果:


核密度估计 sns.jointplot(kind=‘kde’)
示例代码:
# 核密度估计
sns.jointplot(x="x", y="y", data=df_obj1, kind="kde");
运行结果:


数据集中变量间关系可视化 sns.pairplot()
示例代码:
# 数据集中变量间关系可视化
dataset = sns.load_dataset("tips")
#dataset = sns.load_dataset("iris")
sns.pairplot(dataset);
运行结果:


类别数据可视化
#titanic = sns.load_dataset('titanic')
#planets = sns.load_dataset('planets')
#flights = sns.load_dataset('flights')
#iris = sns.load_dataset('iris')
exercise = sns.load_dataset('exercise')
类别散布图
sns.stripplot() 数据点会重叠
示例代码:
sns.stripplot(x="diet", y="pulse", data=exercise)
运行结果:


sns.swarmplot() 数据点避免重叠,hue指定子类别
示例代码:
sns.swarmplot(x="diet", y="pulse", data=exercise, hue='kind')
运行结果: 

类别内数据分布
盒子图 sns.boxplot(), hue指定子类别
示例代码:
# 盒子图
sns.boxplot(x="diet", y="pulse", data=exercise)
#sns.boxplot(x="diet", y="pulse", data=exercise, hue='kind')
运行结果:


小提琴图 sns.violinplot(), hue指定子类别
示例代码:
# 小提琴图
#sns.violinplot(x="diet", y="pulse", data=exercise)
sns.violinplot(x="diet", y="pulse", data=exercise, hue='kind')
运行结果:


类别内统计图
柱状图 sns.barplot()
示例代码:
# 柱状图
sns.barplot(x="diet", y="pulse", data=exercise, hue='kind')
运行结果:


点图 sns.pointplot()
示例代码:
# 点图
sns.pointplot(x="diet", y="pulse", data=exercise, hue='kind');
运行结果:



基于Python语言的数据可视化工具的更多相关文章
- 基于Python的Grib数据可视化
http://www.cnblogs.com/kallan/p/5160017.html
- python grib气象数据可视化
基于Python的Grib数据可视化 利用Python语言实现Grib数据可视化主要依靠三个库——pygrib.numpy和matplotlib.pygrib是欧洲中期天气预报中心 ...
- 一行导出所有任意微软SQL server数据脚本-基于Python的微软官方mssql-scripter工具使用全讲解
文章标题: 一行导出所有任意微软SQL serer数据脚本-基于Python的微软官方mssql-scripter工具使用全讲解 关键字 : mssql-scripter,SQL Server 文章分 ...
- Linux 上的数据可视化工具
Linux 上的数据可视化工具 5 种开放源码图形化工具简介 Linux® 上用来实现数据的图形可视化的应用程序有很多,从简单的 2-D 绘图到 3-D 制图,再到科学图形编程和图形模拟.幸运的是,这 ...
- CentOS6安装各种大数据软件 第九章:Hue大数据可视化工具安装和配置
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- 在我的新书里,尝试着用股票案例讲述Python爬虫大数据可视化等知识
我的新书,<基于股票大数据分析的Python入门实战>,预计将于2019年底在清华出版社出版. 如果大家对大数据分析有兴趣,又想学习Python,这本书是一本不错的选择.从知识体系上来看, ...
- selenium2自动化测试实战--基于Python语言
自动化测试基础 一. 软件测试分类 1.1 根据项目流程阶段划分软件测试 1.1.1 单元测试 单元测试(或模块测试)是对程序中的单个子程序或具有独立功能的代码段进行测试的过程. 1.1.2 集成测试 ...
- 关于《selenium2自动测试实战--基于Python语言》
关于本书的类型: 首先在我看来技术书分为两类,一类是“思想”,一类是“操作手册”. 对于思想类的书,一般作者有很多年经验积累,这类书需要细读与品位.高手读了会深有体会,豁然开朗.新手读了不止所云,甚至 ...
- 基于python语言的tensorflow的‘端到端’的字符型验证码识别源码整理(github源码分享)
基于python语言的tensorflow的‘端到端’的字符型验证码识别 1 Abstract 验证码(CAPTCHA)的诞生本身是为了自动区分 自然人 和 机器人 的一套公开方法, 但是近几年的 ...
- 初识TPOT:一个基于Python的自动化机器学习开发工具
1. TPOT介绍 一般来讲,创建一个机器学习模型需要经历以下几步: 数据预处理 特征工程 模型选择 超参数调整 模型保存 本文介绍一个基于遗传算法的快速模型选择及调参的方法,TPOT:一种基于Pyt ...
随机推荐
- 《Go程序设计语言》学习笔记之数组
<Go程序设计语言>学习笔记之数组 一. 环境 Centos8.5, go1.17.5 linux/amd64 二. 概念 数组是具有固定长度且拥有零个或多个相同数据类型元素的序列. 三. ...
- APP备案通知
截至2024年4月1日前,所以已上市APP均需备案,未备案的可以登陆云擎官网进行备案. 关于工信部开展在中华人民共和国境内从事互联网信息服务的APP主办者,应当依法履行备案手续,未履行备案手续的,不得 ...
- java使用Ffmpeg合成音频和视频
1.Maven依赖 <!-- 需要注意,javacv主要是一组API为主,还需要加入对应的实现 --> <dependency> <groupId>org.byte ...
- 搭建Spring Cloud父工程
1.首先创建一个maven项目 删除src目录,当做一级目录用来管理第三方jar版本控制. 2.配置pom文件. SpringCloud.SpringCloudAlibaba.SpringBoot版本 ...
- GitHub互赞快速涨星,最简单的涨星方法
各位代码们,是不是厌倦了在GitHub上孤独地刷着自己的项目页面,眼巴巴地等待那星星数的涨幅?今天给大家安利一个超级实用的新玩意儿--涨星互助平台,一个让你的GitHub项目星星数飞起来的秘密基地! ...
- .NET 8使用日志功能以及自定义日志提供程序
.NET 8使用日志功能以及自定义日志提供程序 日志级别 下表列出了 LogLevel 值.方便的 Log{LogLevel} 扩展方法以及建议的用法: 展开表 LogLevel "值&qu ...
- IT的贵与慢
本文于2019年7月24日完成,发布在个人博客网站上. 考虑个人博客因某种原因无法修复,于是在博客园安家,之前发布的文章逐步搬迁过来. 笔记而已,没有逻辑. 贵与慢,一方面是事实,另一方面是偏见. 流 ...
- 开源图形驱动在OpenHarmony上的使用和落地
本文转载自 OpenHarmony TSC 官方微信公众号<峰会回顾第10期 | 开源图形驱动在OpenHarmony上的使用和落地> 演讲嘉宾 | 黄 然 回顾整理 | 廖 ...
- Qt将程序最小角化到系统托盘
#include "test.h" #include "QPushButton" #include <QSystemTrayIcon> Test:: ...
- scala json解析到case类
有时候,需要将从json文件读取程序配置设置,并同步到定义好的一些case类中,这个时候可以使用 io.circe解析json文件,并同步文件字段到定义好的case类 case class Confi ...