在本系列的前文 [1,2]中,我们介绍了如何使用 Python 语言图分析库 NetworkX [3] + Nebula Graph [4] 来进行<权力的游戏>中人物关系图谱分析。

在本文中我们将介绍如何使用 Java 语言的图分析库 JGraphT [5] 并借助绘图库 mxgraph [6] ,可视化探索 A 股的行业个股的相关性随时间的变化情况

数据集的处理

本文主要分析方法参考了[7,8],有两种数据集:

股票数据(点集)

从 A 股中按股票代码顺序选取了 160 只股票(排除摘牌或者 ST 的)。每一支股票都被建模成一个点,每个点的属性有股票代码,股票名称,以及证监会对该股票对应上市公司所属板块分类等三种属性;

表1:点集示例

顶点id 股票代码 股票名称 所属板块
1 SZ0001 平安银行 金融行业
2 600000 浦发银行 金融行业
3 600004 白云机场 交通运输
4 600006 东风汽车 汽车制造
5 600007 中国国贸 开发区
6 600008 首创股份 环保行业
7 600009 上海机场 交通运输
8 600010 包钢股份 钢铁行业

股票关系(边集)

边只有一个属性,即权重。边的权重代表边的源点和目标点所代表的两支股票所属上市公司业务上的的相似度——相似度的具体计算方法参考 [7,8]:取一段时间(2014 年 1 月 1 日 - 2020 年 1 月 1 日)内,个股的日收益率的时间序列相关性

再定义个股之间的距离为 (也即两点之间的边权重):

通过这样的处理,距离取值范围为 [0,2]。这意味着距离越远的个股,两个之间的收益率相关性越低

表2: 边集示例

边的源点 ID 边的目标点 ID 边的权重
11 12 0.493257968
22 83 0.517027513
23 78 0.606206233
2 12 0.653692415
1 11 0.677631482
1 27 0.695705171
1 12 0.71124344
2 11 0.73581915
8 18 0.771556458
12 27 0.785046446
9 20 0.789606527
11 27 0.796009627
25 63 0.797218349
25 72 0.799230001
63 115 0.803534952

这样的点集和边集构成一个图网络,可以将这个网络存储在图数据库 Nebula Graph 中。

JGraphT

JGraphT 是一个开放源代码的 Java 类库,它不仅为我们提供了各种高效且通用的图数据结构,还为解决最常见的图问题提供了许多有用的算法:

  • 支持有向边、无向边、权重边、非权重边等;
  • 支持简单图、多重图、伪图;
  • 提供了用于图遍历的专用迭代器(DFS,BFS)等;
  • 提供了大量常用的的图算法,如路径查找、同构检测、着色、公共祖先、游走、连通性、匹配、循环检测、分区、切割、流、中心性等算法;
  • 可以方便地导入 / 导出 GraphViz [9]。导出的 GraphViz 可被导入可视化工具 Gephi[10] 进行分析与展示;
  • 可以方便地使用其他绘图组件,如:JGraphX,mxGraph,Guava Graphs Generators 等工具绘制出图网络。

下面,我们来实践一把,先在 JGraphT 中创建一个有向图:

import org.jgrapht.*;
import org.jgrapht.graph.*;
import org.jgrapht.nio.*;
import org.jgrapht.nio.dot.*;
import org.jgrapht.traverse.*; import java.io.*;
import java.net.*;
import java.util.*; Graph<URI, DefaultEdge> g = new DefaultDirectedGraph<>(DefaultEdge.class);

添加顶点:

URI google = new URI("http://www.google.com");
URI wikipedia = new URI("http://www.wikipedia.org");
URI jgrapht = new URI("http://www.jgrapht.org"); // add the vertices
g.addVertex(google);
g.addVertex(wikipedia);
g.addVertex(jgrapht);

添加边:

// add edges to create linking structure
g.addEdge(jgrapht, wikipedia);
g.addEdge(google, jgrapht);
g.addEdge(google, wikipedia);
g.addEdge(wikipedia, google);

图数据库 Nebula Graph Database

JGraphT 通常使用本地文件作为数据源,这在静态网络研究的时候没什么问题,但如果图网络经常会发生变化——例如,股票数据每日都在变化——每次生成全新的静态文件再加载分析就有些麻烦,最好整个变化过程可以持久化地写入一个数据库中,并且可以实时地直接从数据库中加载子图或者全图做分析。本文选用 Nebula Graph 作为存储图数据的图数据库。

Nebula Graph 的 Java 客户端 Nebula-Java [11] 提供了两种访问 Nebula Graph 方式:一种是通过图查询语言 nGQL [12] 与查询引擎层 [13] 交互,这通常适用于有复杂语义的子图访问类型; 另一种是通过 API 与底层的存储层(storaged)[14] 直接交互,用于获取全量的点和边。除了可以访问 Nebula Graph 本身外,Nebula-Java 还提供了与 Neo4j [15]、JanusGraph [16]、Spark [17] 等交互的示例

在本文中,我们选择直接访问存储层(storaged)来获取全部的点和边。下面两个接口可以用来读取所有的点、边数据:

// space 为待扫描的图空间名称,returnCols 为需要读取的点/边及其属性列,
// returnCols 参数格式:{tag1Name: prop1, prop2, tag2Name: prop3, prop4, prop5}
Iterator<ScanVertexResponse> scanVertex(
String space, Map<String, List<String>> returnCols);
Iterator<ScanEdgeResponse> scanEdge(
String space, Map<String, List<String>> returnCols);

第一步:初始化一个客户端,和一个 ScanVertexProcessor。ScanVertexProcessor 用来对读出来的顶点数据进行解码:

MetaClientImpl metaClientImpl = new MetaClientImpl(metaHost, metaPort);
metaClientImpl.connect();
StorageClient storageClient = new StorageClientImpl(metaClientImpl);
Processor processor = new ScanVertexProcessor(metaClientImpl);

第二步:调用 scanVertex 接口,该接口会返回一个 scanVertexResponse 对象的迭代器:

Iterator<ScanVertexResponse> iterator =
storageClient.scanVertex(spaceName, returnCols);

第三步:不断读取该迭代器所指向的 scanVertexResponse 对象中的数据,直到读取完所有数据。读取出来的顶点数据先保存起来,后面会将其添加到到 JGraphT 的图结构中:

while (iterator.hasNext()) {
ScanVertexResponse response = iterator.next();
if (response == null) {
log.error("Error occurs while scan vertex");
break;
} Result result = processor.process(spaceName, response);
results.addAll(result.getRows(TAGNAME));
}

读取边数据的方法和上面的流程类似。

在 JGraphT 中进行图分析

第一步:在 JGraphT 中创建一个无向加权图 graph:

Graph<String, MyEdge> graph = GraphTypeBuilder
.undirected()
.weighted(true)
.allowingMultipleEdges(true)
.allowingSelfLoops(false)
.vertexSupplier(SupplierUtil.createStringSupplier())
.edgeSupplier(SupplierUtil.createSupplier(MyEdge.class))
.buildGraph();

第二步:将上一步从 Nebula Graph 图空间中读出来的点、边数据添加到 graph 中:

for (VertexDomain vertex : vertexDomainList){
graph.addVertex(vertex.getVid().toString());
stockIdToName.put(vertex.getVid().toString(), vertex);
} for (EdgeDomain edgeDomain : edgeDomainList){
graph.addEdge(edgeDomain.getSrcid().toString(), edgeDomain.getDstid().toString());
MyEdge newEdge = graph.getEdge(edgeDomain.getSrcid().toString(), edgeDomain.getDstid().toString());
graph.setEdgeWeight(newEdge, edgeDomain.getWeight());
}

第三步:参考 [7,8] 中的分析法,对刚才的图 graph 使用 Prim 最小生成树算法(minimun-spanning-tree),并调用封装好的 drawGraph 接口画图:

普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树。即,由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。

SpanningTreeAlgorithm.SpanningTree pMST = new PrimMinimumSpanningTree(graph).getSpanningTree();

Legend.drawGraph(pMST.getEdges(), filename, stockIdToName);

第四步:drawGraph 方法封装了画图的布局等各项参数设置。这个方法将同一板块的股票渲染为同一颜色,将距离接近的股票排列聚集在一起

public class Legend {

...

  public static void drawGraph(Set<MyEdge> edges, String filename, Map<String, VertexDomain> idVertexMap) throws IOException {
// Creates graph with model
mxGraph graph = new mxGraph();
Object parent = graph.getDefaultParent(); // set style
graph.getModel().beginUpdate();
mxStylesheet myStylesheet = graph.getStylesheet();
graph.setStylesheet(setMsStylesheet(myStylesheet)); Map<String, Object> idMap = new HashMap<>();
Map<String, String> industryColor = new HashMap<>(); int colorIndex = 0; for (MyEdge edge : edges) {
Object src, dst;
if (!idMap.containsKey(edge.getSrc())) {
VertexDomain srcNode = idVertexMap.get(edge.getSrc());
String nodeColor;
if (industryColor.containsKey(srcNode.getIndustry())){
nodeColor = industryColor.get(srcNode.getIndustry());
}else {
nodeColor = COLOR_LIST[colorIndex++];
industryColor.put(srcNode.getIndustry(), nodeColor);
}
src = graph.insertVertex(parent, null, srcNode.getName(), 0, 0, 105, 50, "fillColor=" + nodeColor);
idMap.put(edge.getSrc(), src);
} else {
src = idMap.get(edge.getSrc());
} if (!idMap.containsKey(edge.getDst())) {
VertexDomain dstNode = idVertexMap.get(edge.getDst()); String nodeColor;
if (industryColor.containsKey(dstNode.getIndustry())){
nodeColor = industryColor.get(dstNode.getIndustry());
}else {
nodeColor = COLOR_LIST[colorIndex++];
industryColor.put(dstNode.getIndustry(), nodeColor);
} dst = graph.insertVertex(parent, null, dstNode.getName(), 0, 0, 105, 50, "fillColor=" + nodeColor);
idMap.put(edge.getDst(), dst);
} else {
dst = idMap.get(edge.getDst());
}
graph.insertEdge(parent, null, "", src, dst);
} log.info("vertice " + idMap.size());
log.info("colorsize " + industryColor.size()); mxFastOrganicLayout layout = new mxFastOrganicLayout(graph);
layout.setMaxIterations(2000);
//layout.setMinDistanceLimit(10D);
layout.execute(parent); graph.getModel().endUpdate(); // Creates an image than can be saved using ImageIO
BufferedImage image = createBufferedImage(graph, null, 1, Color.WHITE,
true, null); // For the sake of this example we display the image in a window
// Save as JPEG
File file = new File(filename);
ImageIO.write(image, "JPEG", file); } ... }

第五步:生成可视化:

图1中每个顶点的颜色代表证监会对该股票所属上市公司归类的板块

可以看到,实际业务近似度较高的股票已经聚拢成簇状(例如:高速板块、银行版本、机场航空板块),但也会有部分关联性不明显的个股被聚类在一起,具体原因需要单独进行个股研究。

图1: 基于 2015-01-01 至 2020-01-01 的股票数据计算出的聚集性

第六步:基于不同时间窗口的一些其他动态探索

上节中,结论主要基于 2015-01-01 到 2020-01-01 的个股聚集性。这一节我们还做了一些其他的尝试:以 2 年为一个时间滑动窗口,分析方法不变,定性探索聚集群是否随着时间变化会发生改变

图2:基于 2014-01-01 至 2016-01-01 的股票数据计算出的聚集性

图3:基于 2015-01-01 至 2017-01-01 的股票数据计算出的聚集性

图4:基于 2016-01-01 至 2018-01-01 的股票数据计算出的聚集性

图5:基于 2017-01-01 至 2019-01-01 的股票数据计算出的聚集性

图6:基于 2018-01-01 至 2020-01-01 的股票数据计算出的聚集性

粗略分析看,随着时间窗口变化,有些板块(高速、银行、机场航空、房产、能源)的板块内部个股聚集性一直保持比较好——这意味着随着时间变化,这个版块内各种一直保持比较高的相关性;但有些板块(制造)的聚集性会持续变化——意味着相关性一直在发生变化。

Disclaim

本文不构成任何投资建议,且作者不持有本文中任一股票。

受限于停牌、熔断、涨跌停、送转、并购、主营业务变更等情况,数据处理可能有错误,未做一一检查。

受时间所限,本文只选用了 160 个个股样本过去 6 年的数据,只采用了最小扩张树一种办法来做聚类分类。未来可以使用更大的数据集(例如美股、衍生品、数字货币),尝试更多种图机器学习的办法。

本文代码可见[18]

Reference

[1] 用 NetworkX + Gephi + Nebula Graph 分析<权力的游戏>人物关系(上篇)https://nebula-graph.com.cn/posts/game-of-thrones-relationship-networkx-gephi-nebula-graph/

[2] 用 NetworkX + Gephi + Nebula Graph 分析<权力的游戏>人物关系(下篇) https://nebula-graph.com.cn/posts/game-of-thrones-relationship-networkx-gephi-nebula-graph-part-two/

[3] NetworkX: a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. https://networkx.github.io/

[4] Nebula Graph: A powerfully distributed, scalable, lightning-fast graph database written in C++. https://nebula-graph.io/

[5] JGraphT: a Java library of graph theory data structures and algorithms. https://jgrapht.org/

[6] mxGraph: JavaScript diagramming library that enables interactive graph and charting applications. https://jgraph.github.io/mxgraph/

[7] Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario. (2000). High-frequency Cross-correlation in a Set of Stocks. arXiv.org, Quantitative Finance Papers. 1. 10.1080/713665554.

[8] Mantegna, R.N. Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193–197 (1999).

[9] https://graphviz.org/

[10] https://gephi.org/

[11] https://github.com/vesoft-inc/nebula-java

[12] Nebula Graph Query Language (nGQL). https://docs.nebula-graph.com.cn/master/3.ngql-guide/1.nGQL-overview/1.overview/

[13] Nebula Graph Query Engine. https://github.com/vesoft-inc/nebula-graph

[14] Nebula-storage: A distributed consistent graph storage. https://github.com/vesoft-inc/nebula-storage

[15] Neo4j. www.neo4j.com

[16] JanusGraph. janusgraph.org

[17] Apache Spark. spark.apache.org.

[18] https://github.com/Judy1992/nebula_scan

用图机器学习探索 A 股个股相关性变化的更多相关文章

  1. 机器学习-文本数据-文本的相关性矩阵 1.cosing_similarity(用于计算两两特征之间的相关性)

    函数说明: 1. cosing_similarity(array)   输入的样本为array格式,为经过词袋模型编码以后的向量化特征,用于计算两两样本之间的相关性 当我们使用词频或者TFidf构造出 ...

  2. 机器学习入门-数值特征-进行多项式变化(将特征投影到高维度上) 1.PolynomialFeatures(将数据变化为多项式特征)

    函数说明: 1. PolynomialFeatures(degree=2, interaction_only=False, include_bias=False) 参数说明:degree=2,表示多项 ...

  3. GitHub 热点速览 Vol.36:当股票遇到机器学习,异常股无所遁形

    作者:HelloGitHub-小鱼干 摘要:虽然上周的 GitHub Trending 榜新项目寥寥无几,但胜在表现不俗,例如:通过机器学习来检测异常股票的项目 Surpriver,还有腾讯开源的管理 ...

  4. GraphX 在图数据库 Nebula Graph 的图计算实践

    不同来源的异构数据间存在着千丝万缕的关联,这种数据之间隐藏的关联关系和网络结构特性对于数据分析至关重要,图计算就是以图作为数据模型来表达问题并予以解决的过程. 一.背景 随着网络信息技术的飞速发展,数 ...

  5. Python 3 利用机器学习模型 进行手写体数字识别

    0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD ...

  6. Python 3 利用机器学习模型 进行手写体数字检测

    0.引言 介绍了如何生成手写体数字的数据,提取特征,借助 sklearn 机器学习模型建模,进行识别手写体数字 1-9 模型的建立和测试. 用到的几种模型: 1. LR,Logistic Regres ...

  7. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  8. 《Hands-On Machine Learning with Scikit-Learn&TensorFlow》读书笔记

    一 机器学习概览 机器学习的广义概念是:机器学习是让计算机具有学习的能力,无需进行明确编程. 机器学习的工程性概念是:计算机程序利用经验E学习任务T,性能是P,如果针对任务T的性能P随着经验E不断增长 ...

  9. Multi-task Pose-Invariant Face Recognition 论文笔记

    摘要: 在不受限制的环境中拍摄的人脸图像通常包含显著的姿态变化,这会显著降低设计用于识别正面的算法的性能.本文提出了一种新颖的面部识别框架,能够处理±90°偏航范围内的全方位姿势变化.所提出的框架首先 ...

  10. China Vis 2015 会议小结

    China Vis 2015  Paper有6个分会场.主要有 1.天气.气象.灾害可视化. 2.文本可视化应用: 3.树.网络.以及高维技术. 4.时空分析. 5.科学可视化与应用: 五个方面主题. ...

随机推荐

  1. 【一个经典BUG】gin框架中,异步协程使用context导致取不到数据

    bug的内容大致如下: func httpHandle(c *gin.Context) { go func(ctx Context){ v := ctx.Value("xxx") ...

  2. Centos7把home目录下多余的空间转移到/根目录下

    通过df-h发现,根目录只有32G,而home目录可用的,居然有142G.我现在想分出70G给根目录 把你需要挂载的机器的逻辑卷记住(上面的图,左边是逻辑卷,右边是虚拟磁盘) /dev/mapper/ ...

  3. 快递单中抽取关键信息【一】----基于BiGRU+CR+预训练的词向量优化

    相关文章: 1.快递单中抽取关键信息[一]----基于BiGRU+CR+预训练的词向量优化 2.快递单信息抽取[二]基于ERNIE1.0至ErnieGram + CRF预训练模型 3.快递单信息抽取[ ...

  4. WebAssembly入门笔记[4]:利用Global传递全局变量

    利用WebAssembly的导入导出功能可以灵活地实现宿主JavaScript程序与加载的单个wasm模块之间的交互,那么如何在宿主程序与多个wasm之间传递和共享数据呢?这就需要使用到Global这 ...

  5. 分享四个实用的vue自定义指令

    v-drag 需求:鼠标拖动元素 思路: 元素偏移量 = 鼠标滑动后的坐标 - 鼠标初始点击元素时的坐标 + 初始点击时元素距离可视区域的top.left 将可视区域作为边界,限制在可视区域里面拖拽 ...

  6. playwright 一些方法解决cloudflare防护页的问题

    在尝试从一个使用Cloudflare Web应用程序防火墙(WAF)保护的网站获取数据时,我遇到了一些挑战.该网站的安全措施非常严格,以至于在正常浏览几个页面后,Cloudflare的检查页面就会出现 ...

  7. CF455D Serega and Fun 题解

    题目链接:CF 或者洛谷 本题是可以用平衡树去做的,具体的为每个 \(k\) 开一棵平衡树去维护相对位置,而这种移动操作用平衡树维护又是很容易做到的,这种做法是双 \(log\).在 \(1e5\) ...

  8. ch57x/ch58x开启仿真

    本次使用的平台是MounRiver Studio,使用的是WCH的CH582m与WCH-LinkE 仿真之前确保LinkE处在Risc-V模式下  空闲时蓝灯常灭 Step1:首先通过ISP工具开启两 ...

  9. 冰点还原 deep freeze 安装,招聘机试时用到

    官方地址:https://www.faronics.com https://www.bingdiancn.com/(也可以从这个网站下载,我是从这个网站下载的) 需求:招聘时 需要机试,需要做项目,为 ...

  10. NC200324 魔改森林

    题目链接 题目 题目描述 曾经有一道叫做迷雾森林的题目,然而牛牛认为地图中的障碍太多,实在是太难了,所以删去了很多点,出了这道题. 牛牛给出了一个n行m列的网格图 初始牛牛处在最左下角的格点上(n+1 ...