效果

项目

代码

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using System.IO;
using OpenCvSharp.Dnn;
using System.Diagnostics;
using OpenCvSharp.Extensions; namespace OpenCvSharp_YoloV3
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent();
} //random assign color to each label
private static readonly Scalar[] Colors = Enumerable.Repeat(false, 80).Select(x => Scalar.RandomColor()).ToArray(); //get labels from coco.names
private static readonly string[] Labels = File.ReadAllLines("coco.names").ToArray(); string cfg = "yolov3.cfg";
string model = "yolov3.weights";
const float threshold = 0.5f; //for confidence
const float nmsThreshold = 0.3f; //threshold for nms Net net; private void frmMain_Load(object sender, EventArgs e)
{
//load model and config, if you got error: "separator_index < line.size()", check your cfg file, must be something wrong.
net = CvDnn.ReadNetFromDarknet(cfg, model); #region set preferable
net.SetPreferableBackend(3);
/*
0:DNN_BACKEND_DEFAULT
1:DNN_BACKEND_HALIDE
2:DNN_BACKEND_INFERENCE_ENGINE
3:DNN_BACKEND_OPENCV
*/
net.SetPreferableTarget(0);
/*
0:DNN_TARGET_CPU
1:DNN_TARGET_OPENCL
2:DNN_TARGET_OPENCL_FP16
3:DNN_TARGET_MYRIAD
4:DNN_TARGET_FPGA
*/
#endregion
} private void button1_Click(object sender, EventArgs e)
{
if (bmp == null) return; //get image
var org = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);//bitmap转mat
Cv2.CvtColor(org, org, ColorConversionCodes.RGBA2RGB);//mat转三通道mat //setting blob, size can be:320/416/608
//opencv blob setting can check here https://github.com/opencv/opencv/tree/master/samples/dnn#object-detection
var blob = CvDnn.BlobFromImage(org, 1.0 / 255, new OpenCvSharp.Size(416, 416), new Scalar(), true, false); //input data
net.SetInput(blob); //get output layer name
var outNames = net.GetUnconnectedOutLayersNames();
//create mats for output layer
var outs = outNames.Select(_ => new Mat()).ToArray(); #region forward model
Stopwatch sw = new Stopwatch();
sw.Start(); net.Forward(outs, outNames); sw.Stop();
Console.WriteLine("Runtime:{" + sw.ElapsedMilliseconds + "} ms");
#endregion //get result from all output
GetResult(outs, org, threshold, nmsThreshold); Bitmap Bitmap1 = BitmapConverter.ToBitmap(org);
pictureBox2.Image = Bitmap1; } /// <summary>
/// Get result form all output
/// </summary>
/// <param name="output"></param>
/// <param name="image"></param>
/// <param name="threshold"></param>
/// <param name="nmsThreshold">threshold for nms</param>
/// <param name="nms">Enable Non-maximum suppression or not</param>
private static void GetResult(IEnumerable<Mat> output, Mat image, float threshold, float nmsThreshold, bool nms = true)
{
//for nms
var classIds = new List<int>();
var confidences = new List<float>();
var probabilities = new List<float>();
var boxes = new List<Rect2d>(); var w = image.Width;
var h = image.Height;
/*
YOLO3 COCO trainval output
0 1 : center 2 3 : w/h
4 : confidence 5 ~ 84 : class probability
*/
const int prefix = 5; //skip 0~4 foreach (var prob in output)
{
for (var i = 0; i < prob.Rows; i++)
{
var confidence = prob.At<float>(i, 4);
if (confidence > threshold)
{
//get classes probability
OpenCvSharp.Point max;
OpenCvSharp.Point minLoc;
Cv2.MinMaxLoc(prob.Row[i].ColRange(prefix, prob.Cols), out minLoc, out max);
var classes = max.X;
var probability = prob.At<float>(i, classes + prefix); if (probability > threshold) //more accuracy, you can cancel it
{
//get center and width/height
var centerX = prob.At<float>(i, 0) * w;
var centerY = prob.At<float>(i, 1) * h;
var width = prob.At<float>(i, 2) * w;
var height = prob.At<float>(i, 3) * h; if (!nms)
{
// draw result (if don't use NMSBoxes)
Draw(image, classes, confidence, probability, centerX, centerY, width, height);
continue;
} //put data to list for NMSBoxes
classIds.Add(classes);
confidences.Add(confidence);
probabilities.Add(probability);
boxes.Add(new Rect2d(centerX, centerY, width, height));
}
}
}
} if (!nms) return; //using non-maximum suppression to reduce overlapping low confidence box
int[] indices;
CvDnn.NMSBoxes(boxes, confidences, threshold, nmsThreshold, out indices); Console.WriteLine("NMSBoxes drop {" + (confidences.Count - indices.Length) + "} overlapping result."); foreach (var i in indices)
{
var box = boxes[i];
Draw(image, classIds[i], confidences[i], probabilities[i], box.X, box.Y, box.Width, box.Height);
} } /// <summary>
/// Draw result to image
/// </summary>
/// <param name="image"></param>
/// <param name="classes"></param>
/// <param name="confidence"></param>
/// <param name="probability"></param>
/// <param name="centerX"></param>
/// <param name="centerY"></param>
/// <param name="width"></param>
/// <param name="height"></param>
private static void Draw(Mat image, int classes, float confidence, float probability, double centerX, double centerY, double width, double height)
{
//label formating
var label = Labels[classes] + " " + (probability * 100).ToString("0.00") + "%"; Console.WriteLine("confidence " + (confidence * 100).ToString("0.00") + "% " + label); var x1 = (centerX - width / 2) < 0 ? 0 : centerX - width / 2; //avoid left side over edge
//draw result
image.Rectangle(new OpenCvSharp.Point(x1, centerY - height / 2), new OpenCvSharp.Point(centerX + width / 2, centerY + height / 2), Colors[classes], 2); int baseline;
var textSize = Cv2.GetTextSize(label, HersheyFonts.HersheyTriplex, 0.5, 1, out baseline); Cv2.Rectangle(image, new Rect(new OpenCvSharp.Point(x1, centerY - height / 2 - textSize.Height - baseline),
new OpenCvSharp.Size(textSize.Width, textSize.Height + baseline)), Colors[classes], Cv2.FILLED); var textColor = Cv2.Mean(Colors[classes]).Val0 < 70 ? Scalar.White : Scalar.Black; Cv2.PutText(image, label, new OpenCvSharp.Point(x1, centerY - height / 2 - baseline), HersheyFonts.HersheyTriplex, 0.5, textColor);
} private string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
Bitmap bmp; private void button2_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
var imagebyte = File.ReadAllBytes(ofd.FileName);
bmp = new Bitmap(new MemoryStream(imagebyte));
pictureBox1.Image = bmp; } }
}

Demo下载

C#OpenCvSharp YOLO v3 Demo的更多相关文章

  1. 深度学习笔记(十三)YOLO V3 (Tensorflow)

    [代码剖析]   推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了  于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...

  2. YOLO v3

    yolo为you only look once. 是一个全卷积神经网络(FCN),它有75层卷积层,包含跳跃式传递和降采样,没有池化层,当stide=2时用做降采样. yolo的输出是一个特征映射(f ...

  3. YOLO系列:YOLO v3解析

    本文好多内容转载自 https://blog.csdn.net/leviopku/article/details/82660381 yolo_v3 提供替换backbone.要想性能牛叉,backbo ...

  4. Yolo V3整体思路流程详解!

    结合开源项目tensorflow-yolov3(https://link.zhihu.com/?target=https%3A//github.com/YunYang1994/tensorflow-y ...

  5. YOLO v3算法介绍

    图片来自https://towardsdatascience.com/yolo-v3-object-detection-with-keras-461d2cfccef6 数据前处理 输入的图片维数:(4 ...

  6. 一文看懂YOLO v3

    论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf论文:YOLOv3: An Incremental Improvement YOLO系列的 ...

  7. YOLO V3 原理

    基本思想V1: 将输入图像分成S*S个格子,每隔格子负责预测中心在此格子中的物体. 每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率. bbox ...

  8. Pytorch从0开始实现YOLO V3指南 part5——设计输入和输出的流程

    本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch ...

  9. Pytorch从0开始实现YOLO V3指南 part1——理解YOLO的工作

    本教程翻译自https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/ 视频展示:https://w ...

  10. yolo类检测算法解析——yolo v3

    每当听到有人问“如何入门计算机视觉”这个问题时,其实我内心是拒绝的,为什么呢?因为我们说的计算机视觉的发展史可谓很长了,它的分支很多,而且理论那是错综复杂交相辉映,就好像数学一样,如何学习数学?这问题 ...

随机推荐

  1. 【Unity3D】固定管线着色器一

    1 前言 ​ 着色器(Shader)是渲染管线中最重要的一环,Unity3D 底层基于 OpenGL 实现,读者可以通过 渲染管线 了解 Unity3D 渲染流程. ​ OpenGL 1.x 为固定管 ...

  2. DOM和BOM的区别

    DOM和BOM的区别 在浏览器中运行的JavaScript可以认为由三部分组成:ECMAScript描述了该语言的语法和基本对象,DOM文档对象模型描述了处理网页内容的方法和接口,BOM浏览器对象模型 ...

  3. Java设计模式-命令模式Command

    介绍 命令模式(Command Pattern):在软件设计中,我们经常需要向某些对象发送请求,但是并不知道请求的接收 者是谁,也不知道被请求的操作是哪个, 我们只需在程序运行时指定具体的请求接收者即 ...

  4. 跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)

    跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA) 介绍:首先在 Ziya-LLaMA-13B-V1基线模型的基础上加入中医教材.中医各 ...

  5. win32 - PE Executable and section inject

    #include <iostream> #include <Windows.h> #include <ShlObj.h> #include <Shlwapi. ...

  6. 硬件开发笔记(十): 硬件开发基本流程,制作一个USB转RS232的模块(九):创建CH340G/MAX232封装库sop-16并关联原理图元器件

    前言   有了原理图,可以设计硬件PCB,在设计PCB之间还有一个协同优先动作,就是映射封装,原理图库的元器件我们是自己设计的.为了更好的表述封装设计过程,本文描述了CH340G和MAX232芯片封装 ...

  7. macOS通过ssh使用PEM登录

    在win上面可以使用XSHELL来登录类似于亚马逊这样的安全服务器,在mac上面就可以使用系统自带的命令工具来连接 使用命令 ssh -i key.pem [server] 如下: ssh -i ke ...

  8. 手机端User-agent

    转载: http://www.fynas.com/ua 设备 系统 浏览器 User-Agent vivo X20Plus A Android 手机百度 Mozilla/5.0 (Linux; And ...

  9. redis开启多端口

    Centos安装多端口的redis服务 背景 redis默认端口6379,由于开发需要,key有重复.于是另起端口6380. 配置服务过程 1.新建/etc/redis6380.conf,内容如下: ...

  10. RabbitMQ 快速复习

    目录 RabbitMQ学习笔记 1.消息队列概述 1.1 为什么学习消息队列 1.2 什么是消息中间件 1.3 消息队列应用场景 1.3.1 异步处理 1.3.2 解耦服务 1.3.3 流量削峰 1. ...