locust多进程实现分布式压测遇到的问题
多进程分布式的实现:
locust分布式时,需借助命令locust 一个一个启动worker,在使用中有点繁琐,
下面借助于多进程,按既定worker数量,一键启动;
from locust import FastHttpUser, task, User, events, HttpUser
#class WebsiteUser(FastHttpUser): 错误的使用!!!
class WebsiteUser(HttpUser): #正确的使用
tasks = [TaskSet]
host = "https://www.baidu.com"
wait_time = between(0, 0)
def processFun(cmd):
os.system(cmd)
def start_by_process(tst_locust_file, slave_num, master_host='127.0.0.1', locust_web_port=8090, no_web=False,
user_num=10, user_rate=1, result_log='result.log', run_log='run.log'):
p_lst = []
if no_web:
slave_cmd = f"locust -f {tst_locust_file} --worker --master-host={master_host}"
master_cmd = f"locust -f {tst_locust_file} --headless -u {user_num} -r {user_rate} --master"
else:
slave_cmd = f"locust -f {tst_locust_file} --worker --master-host={master_host}"
master_cmd = f"locust -f {tst_locust_file} --web-host {master_host} --web-port {locust_web_port} --master"
master_cmd += f' --logfile {result_log} --loglevel INFO 1>{run_log} 2>&1'
# 启动master
process_master = multiprocessing.Process(target=processFun, args=(master_cmd,))
process_master.start()
p_lst.append(process_master)
# 启动 worker
for index_num in range(slave_num):
process = multiprocessing.Process(target=processFun, args=(slave_cmd,))
process.start()
p_lst.append(process)
# 阻塞等待
for process in p_lst:
process.join()
if __name__ == "__main__":
tst_locust_path = 'wms/wms_test'
slave_num = 3 # 计划所启动worker数量, 不可超过运行机的CPU数量
master_host = '127.0.0.1'
master_host = '192.168.1.102'
locust_web_port = 8099 # locust web页面挂载端口
no_web = False
tst_locust_file = os.path.basename(__file__) # 本脚本名
os.chdir(os.getcwd().replace(tst_locust_path.replace('/', os.sep), ''))
tst_locust_file = f'{tst_locust_path}/{tst_locust_file}'
start_by_process(tst_locust_file, slave_num, master_host, locust_web_port, no_web=no_web)
问题:
在上述代码中,我使用了
class WebsiteUser(FastHttpUser): 错误的使用!!!这个方式,来使用locust的User类,当执行压测时,work会因CPU过高而miss掉,导致压测终止.当切换成class WebsiteUser(HttpUser): #正确的使用时,可以正常执行locust的压测.
HttpUser和FastHttpUser介绍:
在Locust中,HttpUser 和 FastHttpUser 是两种不同的用户行为模拟类,它们分别用于模拟不同的HTTP客户端行为。以下是这两种类的主要区别:
HttpUser
HttpUser是Locust的基本HTTP用户模拟类,它使用requests库来发送HTTP请求。HttpUser支持多线程或多进程模式,具体取决于你的配置。- 它提供了丰富的功能和灵活性,包括支持重试、会话管理、以及使用
requests库的所有特性。 - 由于
requests库本身是同步的,因此在高并发场景下,HttpUser可能会导致较高的CPU使用率,尤其是当请求之间没有足够的等待时间时。 HttpUser适用于大多数HTTP负载测试场景,特别是那些对复杂性和灵活性有较高要求的测试。
FastHttpUser
FastHttpUser是一个较新的类,它使用httpx库来发送HTTP请求,这是一个异步的HTTP客户端库。FastHttpUser提供了更高的性能和更低的CPU使用率,因为它使用了异步I/O,可以在等待网络响应时执行其他任务。- 它特别适合于高并发的场景,可以显著减少CPU使用率,尤其是在大量并发用户的情况下。
FastHttpUser相对于HttpUser来说,可能不支持requests库的所有高级特性,但在大多数情况下,基本的功能如GET、POST请求等都是支持的。- 如果你的目标是进行大规模并发测试,同时保持较低的CPU使用率,
FastHttpUser是一个很好的选择。
总结
- 如果你的测试场景需要高度定制化的请求设置或者你已经在使用
requests库的高级功能,那么HttpUser可能更适合你。 - 如果你希望在高并发场景下减少CPU使用率,并且能够接受一定的功能限制,那么
FastHttpUser是一个更好的选择。
示例
以下是使用HttpUser和FastHttpUser的简单示例:
HttpUser 示例
from locust import HttpUser, task, between
class MyHttpUser(HttpUser):
wait_time = between(1, 5)
@task
def my_task(self):
self.client.get("/some_endpoint")
FastHttpUser 示例
from locust import FastHttpUser, task, between
class MyFastHttpUser(FastHttpUser):
wait_time = between(1, 5)
@task
def my_task(self):
self.client.get("/some_endpoint")
请注意,在使用FastHttpUser时,你需要确保你的Locust版本支持该类。如果不确定,可以检查你的Locust版本或者查阅官方文档。
原因分析:
- 异步I/O与多进程的交互:
- FastHttpUser使用httpx库来进行异步HTTP请求,而httpx是基于trio或anyio的异步I/O库。
- 在多进程环境下,每个进程都有自己的事件循环,这可能导致每个进程中的异步I/O操作无法有效地与其他进程协调,从而增加了CPU的负担。
- 多进程与异步I/O的兼容性:
- 多进程模式下,每个进程都有独立的内存空间和事件循环,这可能意味着每个进程都在单独运行其事件循环,而不是共享一个全局的事件循环。这种情况下,每个进程都在尝试同时执行大量的异步任务,可能会导致CPU使用率上升。
- 事件循环的调度:
- 在FastHttpUser中,每个进程可能有自己的事件循环,而在多进程模式下,这些事件循环可能没有被有效地调度,导致CPU使用率增加。
- httpx的异步特性通常在单进程中表现更好,因为它可以充分利用事件驱动模型的优势,但在多进程环境下,每个进程都需要维护自己的事件循环,这可能会导致额外的开销。
- 并发模型的不匹配:
- FastHttpUser的设计初衷是为了利用异步I/O的优势来提高性能,特别是在高并发场景下。然而,在多进程模式下,这种优势可能会因为进程间的隔离和通信开销而被抵消。
总结: FastHttpUser更适合单进程下使用,HttpUser更适合多进程情况
locust多进程实现分布式压测遇到的问题的更多相关文章
- 案例 | 荔枝微课基于 kubernetes 搭建分布式压测系统
王诚强,荔枝微课基础架构负责人.热衷于基础技术研发推广,致力于提供稳定高效的基础架构,推进了荔枝微课集群化从0到1的发展,云原生架构持续演进的实践者. 本文根据2021年4月10日深圳站举办的[腾讯云 ...
- jmeter分布式压测
stop.sh需要跑Jmeter的服务器上安装Jmeteryum install lrzsz 安装rz.sz命令rz jemter的压缩包 拷贝到/usr/local/tools下面unzip apa ...
- jmeter 分布式压测(Linux)
之前一篇博文写的是如何在Linux上使用jmeter压测,这篇介绍下Linux上jmeter的分布式压测. 和windows上的分布式类似,需要配置agent节点和控制机 一.Agent节点配置 1. ...
- jmeter 分布式压测(windows)
单台压测机通常会遇到客户端瓶颈,受制于客户机的性能.可能由于网络带宽,CPU,内存的限制不能给到服务器足够的压力,这个时候你就需要用到分布式方案来解决客户机的瓶颈,压测的结果也会更加接近于真实情况. ...
- Jmeter 在linux下的分布式压测
Jmeter 在linux下的分布式压测 0.将 windows机器作为master 控制机(同时也兼做负载机slave), linux机器作为 负载机 slave. 1.linux环境安装 : (1 ...
- 分布式压测系列之Jmeter4.0第一季
1)Jmeter4.0介绍 jmeter是个纯java编写的开源压测工具,apache旗下的开源软件,一开始是设计为web测试的软件,由于发展迅猛,现在可以压测许多协议比如:http.https.so ...
- JMeter在linux上分布式压测步骤(二)
哈喽,我又来了~ 前提:三台linux虚拟机,一台作为master,另外两台作为slave. 一.server端 1.修改1099端口,client和server通信的端口,可以不修改,默认就是109 ...
- jmeter实现分布式压测步骤
环境说明:安装与控制机相同版本的jdk与jmeter 1.修改控制机中的jmeter.properties文件 将<remote_hosts=127.0.0.1>改为<remote_ ...
- Linux环境下进行分布式压测踩过的坑
背景:公司为了满足大并发的情况,需要测试组配合,就需要分布式压测,这里我把我踩过坑都记录下来: 环境:Linux + jmeter-v.5.1.1;使用3台2核4G的压力机: Q1: Server f ...
- jmeter5.1分布式压测
在使用jmeter压测过程中,可能会度遇到内存溢出的错误,这是为什么呢?因为jmeter是java写的应用,java应用jvm堆内存heap受负载机硬件限制,虽然我们可以调整堆内存大小,但是单机无法支 ...
随机推荐
- Symbol.for()
当我们在不同的模块或文件中需要共享一个特定的Symbol时,可以使用Symbol.for()方法来实现. 假设我们有两个模块,分别是module1.js和module2.js.我们希望在这两个模块中使 ...
- C#.NET Framework RSA 公钥加密-私钥解密
C#.NET Framework RSA 公钥加密-私钥解密 加密解析: //假设私钥长度为1024, 1024/8-11=117. //如果明文的长度小于117,直接全加密,然后转base64.(d ...
- C#.NET 操作FTP
工具类: using System; using System.Collections.Generic; using System.IO; using System.Net; namespace Co ...
- realtek高清晰音频管理器 WIN10
在WIN10里已经改名了: Realtek Audio Console . 在安装realtek声卡驱动后,Realtek Audio Console 会自动安装.
- php监控
1.开启php的监控数据监控功能 # 使用部署了php-fpm的机器即可 # yum install php-fpm -y # 1.修改参数 [root@web-7 /etc/php-fpm.d]#g ...
- 338 warnings potentially fixable with the `--fix` option.
将lint的值设置为eslint --fix --ext .js,.vue src,重启就可以了或者直接把lint这行删除掉
- java多线程编程:你真的了解线程中断吗?
java.lang.Thread类有一个 interrupt 方法,该方法直接对线程调用.当被interrupt的线程正在sleep或wait时,会抛出 InterruptedException 异常 ...
- sqlyog 工具 查看 历史记录
sqlyog 工具 查看 历史记录 可以查看当前客户端的执行脚本的情况
- Web之http学习笔记
目录 HTTP url http请求 请求行 请求方法 请求头 请求正文 http响应 响应行 状态码 响应头 响应正文 Cookie 定义: 内容: 用途: 生命周期: 隐私和安全性: Sessio ...
- Python优雅遍历字典删除元素的方法
在Python中,直接遍历字典并在遍历过程中删除元素可能会导致运行时错误,因为字典在迭代时并不支持修改其大小.但是,我们可以通过一些方法间接地达到这个目的. 1.方法一:字典推导式创建新字典(推荐) ...