代码随想录算法训练营

代码随想录算法训练营Day38 动态规划|62.不同路径 63. 不同路径 II

62.不同路径

题目链接:62.不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

  • 输入:m = 2, n = 3
  • 输出:3

    解释: 从左上角开始,总共有 3 条路径可以到达右下角。
  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

总体思路

题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:{
int dfs(int i, int j, int m, int n) {
if (i > m || j > n) return 0; // 越界了
if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
}
public{
int uniquePaths(int m, int n) {
return dfs(1, 1, m, n);
}
}

这个深搜的算法,其实就是要遍历整个二叉树。

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

    `dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
  2. 确定递推公式

    想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j]dp[i][j - 1]。 此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。 那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]`只有这两个方向过来。
  3. dp数组的初始化

    如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

    所以初始化代码为:
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序

    这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

    这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
  2. 举例推导dp数组

    如图所示:

class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};

63. 不同路径 II

题目链接:63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

总体思路

62.不同路径中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

    dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
  2. 确定递推公式

    递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

    但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

    所以代码为:
if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
  1. dp数组如何初始化

    62.不同路径不同路径中我们给出如下的初始化:
vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:



下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

4. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

代码如下:

for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
  1. 举例推导dp数组

    拿示例1来举例如题:



    对应的dp table 如图:



如果这个图看不同,建议在理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应C++代码如下:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};

代码随想录算法训练营Day39 动态规划的更多相关文章

  1. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  2. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  3. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

  4. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  5. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  6. 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素

    基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...

  7. 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈

    基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...

  8. 代码随想录算法训练营day06 | leetcode 242、349 、202、1

    基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...

  9. 代码随想录算法训练营day03 | LeetCode 203/707/206

    基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...

  10. 代码随想录算法训练营day24 | leetcode 77. 组合

    基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...

随机推荐

  1. 基于Sekiro的jsRPC的使用和安装

    什么是jsRPC 说实话在介绍 JSRPC 我向大家推荐一个库 Selenium-wire 感觉和JSrpc的原理很像 RPC指远程过程调用,APP里面的RPC大家比较熟悉了. 那什么是jsRPC,顾 ...

  2. Rainbond PipeLine插件部署与springboot应用部署实践

    前言:上一篇介绍额rainbond单机部署+单个节点的k8s环境搭建,本篇介绍rainbond5.12新增的pipeline插件的使用 1.Pipeline插件的安装 安装gitlab与gitlab- ...

  3. 总结workerman启动与停止相关命令

    手册:https://www.workerman.net/doc/workerman/install/start-and-stop.html 本篇文章给大家介绍一下workerman启动与停止相关命令 ...

  4. Json和对象之间的转换

    JSON是一种字符: json转对象: var str = '{"name":"admin","age":16,"sex" ...

  5. Oracle_表空间

    Oracle 表空间 在执行具体的操作之前,由于Oracle不允许删除现有临时表空间,所以在删除现有临时表空间时要终止现有的实时会话. 查询Oracle表空间名称,表空间物理文件路径 查询临时表空间: ...

  6. 【深入浅出 Yarn 架构与实现】6-2 NodeManager 状态机管理

    一.简介 NodeManager(NM)中的状态机分为三类:Application.Container 和 LocalizedResource,它们均直接或者间接参与维护一个应用程序的生命周期. 当 ...

  7. 【Note】贪心

    感谢 $ \text{orzws/chy} $ 倾情授课. 目录 -1. 证明方式 0. 朴素贪心 AT2557 [ARC073C] Ball Coloring P2587 [ZJOI2008]泡泡堂 ...

  8. day107:MoFang:Python操作MongoDB数据库:PyMongo

    目录 PyMongo 1.PyMongo安装 2.数据库连接 3.数据库管理 4.集合管理 5.文档管理 PyMongo 1.PyMongo安装 pip install pymongo 2.数据库连接 ...

  9. CVE-2022-21454:漏洞整改mysql5.7.37升级至5.7.38 tar包升级

    问题描述:对数据库服务器进行漏扫,发现一些中高位漏洞需要整改,有些数据库需要升级到最新版 漏洞修改指导链接:https://www.oracle.com/security-alerts/cpuapr2 ...

  10. 【Vue项目】商品汇前台(二)进度条插件+Vuex模块化仓库+函数的防抖与节流+路由传参

    前言 1 nprogress进度条的使用 当请求发出进度条出现并向前走,请求成功后进度条消失.nprogress是一种进度条插件 1.1 nprogress进度条插件安装 npm i --save n ...