一:背景

1. 讲故事

这个问题的由来是在.NET高级调试训练营第十期分享ThreadStatic底层玩法的时候,有朋友提出了AsyncLocal是如何实现的,虽然做了口头上的表述,但总还是会不具体,所以觉得有必要用文字+图表的方式来系统的说一下这个问题。

二:AsyncLocal 线程间传值

1. 线程间传值途径

在 C# 编程中实现多线程以及线程切换的方式大概如下三种:

  • Thread
  • Task
  • await,async

这三种场景下的线程间传值有各自的实现方式,由于篇幅限制,先从 Thread 开始聊吧。本质上来说 AsyncLocal 是一个纯托管的C#玩法,和 coreclr,Windows 没有任何关系。

2. Thread 小例子

为了方便讲述,先来一个例子看下如何在新Thread线程中提取 _asyncLocal 中的值,参考代码如下:


internal class Program
{
static AsyncLocal<int> _asyncLocal = new AsyncLocal<int>(); static void Main(string[] args)
{
_asyncLocal.Value = 10; var t = new Thread(() =>
{
Console.WriteLine($"Tid={Thread.CurrentThread.ManagedThreadId}, AsyncLocal value: {_asyncLocal.Value},");
Debugger.Break();
}); t.Start(); Console.ReadLine();
}
}

从截图看 tid=7 线程果然拿到了 主线程设置的 10 ,哈哈,是不是充满了好奇心?接下来逐一分析下吧。

3. 流转分析

首先观察下 _asyncLocal.Value = 10 在源码层做了什么,参考代码如下:


public T Value
{
set
{
ExecutionContext.SetLocalValue(this, value, m_valueChangedHandler != null);
}
} internal static void SetLocalValue(IAsyncLocal local, object newValue, bool needChangeNotifications)
{
ExecutionContext executionContext = Thread.CurrentThread._executionContext; Thread.CurrentThread._executionContext = new ExecutionContext(asyncLocalValueMap, array, flag2));
}

从源码中可以看到这个 10 最终封印在 Thread.CurrentThread._executionContext 字段中,接下来就是核心问题了,它是如何被送到新线程中的呢?

其实仔细想一想,要让我实现的话,我肯定这么实现。

  1. 将主线程的 _executionContext 字段赋值给新线程 t._executionContext 字段。

  2. var t = new Thread() 中的t作为参数传递给 win32 的 CreateThread 函数,这样在新线程中就可以提取 到 t 了,然后执行 t 的callback。

这么说大家可能有点抽象,我就直接画下C#是怎么流转的图吧:

有了这张图之后接下来的问题就是验证了,首先看一下 copy 操作在哪里? 可以观察下 Start 源码。


private void Start(bool captureContext)
{
StartHelper startHelper = _startHelper;
if (startHelper != null)
{
startHelper._startArg = null;
startHelper._executionContext = (captureContext ? System.Threading.ExecutionContext.Capture() : null);
}
StartCore();
}
public static ExecutionContext? Capture()
{
ExecutionContext executionContext = Thread.CurrentThread._executionContext;
return executionContext;
}

从源码中可以看到将主线程的 _executionContext 字段给了新线程t下的startHelper._executionContext

接下来我们观察下在创建 OS 线程的时候是不是将 Thread 作为参数传过去了,如果传过去了,那就可以直接在新线程中拿到 Thread._startHelper._executionContext 字段,验证起来也很简单,在win32 的 ntdll!NtCreateThreadEx 上下一个断点即可。


0:000> bp ntdll!NtCreateThreadEx
0:000> g
Breakpoint 1 hit
ntdll!NtCreateThreadEx:
00007ff9`0fe8e8c0 4c8bd1 mov r10,rcx
0:000> r
rax=00007ff8b4a529d0 rbx=0000000000000000 rcx=0000008471b7df28
rdx=00000000001fffff rsi=0000027f2ca25b01 rdi=0000027f2ca25b60
rip=00007ff90fe8e8c0 rsp=0000008471b7de68 rbp=00007ff8b4a529d0
r8=0000000000000000 r9=ffffffffffffffff r10=0000027f2c8a0000
r11=0000008471b7de40 r12=0000008471b7e890 r13=0000008471b7e4f8
r14=ffffffffffffffff r15=0000000000010000
iopl=0 nv up ei pl nz na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000206
ntdll!NtCreateThreadEx:
00007ff9`0fe8e8c0 4c8bd1 mov r10,rcx
0:000> !t
ThreadCount: 4
UnstartedThread: 1
BackgroundThread: 2
PendingThread: 0
DeadThread: 0
Hosted Runtime: no
Lock
DBG ID OSID ThreadOBJ State GC Mode GC Alloc Context Domain Count Apt Exception
0 1 2cd8 0000027F2C9E6610 2a020 Preemptive 0000027F2E5DB438:0000027F2E5DB4A0 0000027f2c9dd670 -00001 MTA
6 2 2b24 0000027F2CA121E0 21220 Preemptive 0000000000000000:0000000000000000 0000027f2c9dd670 -00001 Ukn (Finalizer)
7 3 2658 0000027F4EAA0AE0 2b220 Preemptive 0000000000000000:0000000000000000 0000027f2c9dd670 -00001 MTA
XXXX 4 0 0000027F2CA25B60 9400 Preemptive 0000000000000000:0000000000000000 0000027f2c9dd670 -00001 Ukn

从输出中可以看到 NtCreateThreadEx 方法的第二个参数即 rdi=0000027f2ca25b60 就是我们的托管线程,如果你不相信的话可以再用 windbg 找到它的托管线程信息,输出如下:


0:000> dt coreclr!Thread 0000027F2CA25B60 -y m_ExposedObject
+0x1c8 m_ExposedObject : 0x0000027f`2c8f11d0 OBJECTHANDLE__ 0:000> !do poi(0x0000027f`2c8f11d0)
Name: System.Threading.Thread
MethodTable: 00007ff855090d78
EEClass: 00007ff85506a700
Tracked Type: false
Size: 72(0x48) bytes
File: C:\Program Files\dotnet\shared\Microsoft.NETCore.App\6.0.25\System.Private.CoreLib.dll
Fields:
MT Field Offset Type VT Attr Value Name
00007ff8550c76d8 4000b35 8 ....ExecutionContext 0 instance 0000000000000000 _executionContext
0000000000000000 4000b36 10 ...ronizationContext 0 instance 0000000000000000 _synchronizationContext
00007ff85508d708 4000b37 18 System.String 0 instance 0000000000000000 _name
00007ff8550cb9d0 4000b38 20 ...hread+StartHelper 0 instance 0000027f2e5db3b0 _startHelper
...

有些朋友可能要说,你现在的 _executionContext 字段是保留在 _startHelper 类里,并没有赋值到Thread._executionContext字段呀?那这一块在哪里实现的呢?从上图可以看到其实是在新线程的执行函数上,在托管函数执行之前会将 _startHelper._executionContext 赋值给 Thread._executionContext , 让 windbg 继续执行,输出如下:


0:009> k
# Child-SP RetAddr Call Site
00 00000084`728ff778 00007ff8`b4c23d19 KERNELBASE!wil::details::DebugBreak+0x2
01 00000084`728ff780 00007ff8`b43ba7ea coreclr!DebugDebugger::Break+0x149 [D:\a\_work\1\s\src\coreclr\vm\debugdebugger.cpp @ 148]
02 00000084`728ff900 00007ff8`54ff56e3 System_Private_CoreLib!System.Diagnostics.Debugger.Break+0xa [/_/src/coreclr/System.Private.CoreLib/src/System/Diagnostics/Debugger.cs @ 18]
03 00000084`728ff930 00007ff8`b42b4259 ConsoleApp9!ConsoleApp9.Program.<>c.<Main>b__1_0+0x113
04 00000084`728ff9c0 00007ff8`b42bddd9 System_Private_CoreLib!System.Threading.Thread.StartHelper.Callback+0x39 [/_/src/libraries/System.Private.CoreLib/src/System/Threading/Thread.cs @ 42]
05 00000084`728ffa00 00007ff8`b42b2f4a System_Private_CoreLib!System.Threading.ExecutionContext.RunInternal+0x69 [/_/src/libraries/System.Private.CoreLib/src/System/Threading/ExecutionContext.cs @ 183]
06 00000084`728ffa70 00007ff8`b4b7ba53 System_Private_CoreLib!System.Threading.Thread.StartCallback+0x8a [/_/src/coreclr/System.Private.CoreLib/src/System/Threading/Thread.CoreCLR.cs @ 105]
07 00000084`728ffab0 00007ff8`b4a763dc coreclr!CallDescrWorkerInternal+0x83
08 00000084`728ffaf0 00007ff8`b4b5e713 coreclr!DispatchCallSimple+0x80 [D:\a\_work\1\s\src\coreclr\vm\callhelpers.cpp @ 220]
09 00000084`728ffb80 00007ff8`b4a52d25 coreclr!ThreadNative::KickOffThread_Worker+0x63 [D:\a\_work\1\s\src\coreclr\vm\comsynchronizable.cpp @ 158]
...
0d (Inline Function) --------`-------- coreclr!ManagedThreadBase_FullTransition+0x2d [D:\a\_work\1\s\src\coreclr\vm\threads.cpp @ 7569]
0e (Inline Function) --------`-------- coreclr!ManagedThreadBase::KickOff+0x2d [D:\a\_work\1\s\src\coreclr\vm\threads.cpp @ 7604]
0f 00000084`728ffd60 00007ff9`0e777614 coreclr!ThreadNative::KickOffThread+0x79 [D:\a\_work\1\s\src\coreclr\vm\comsynchronizable.cpp @ 230]
10 00000084`728ffdc0 00007ff9`0fe426a1 KERNEL32!BaseThreadInitThunk+0x14
11 00000084`728ffdf0 00000000`00000000 ntdll!RtlUserThreadStart+0x21
...

在上面的回调函数中看的非常清楚,在执行托管函数 <Main>b__1_0 之前执行了一个 ExecutionContext.RunInternal 函数,对,就是它来实现的,参考代码如下:


private sealed class StartHelper
{
internal void Run()
{
System.Threading.ExecutionContext.RunInternal(_executionContext, s_threadStartContextCallback, this);
}
} internal static void RunInternal(ExecutionContext executionContext, ContextCallback callback, object state)
{
Thread currentThread = Thread.CurrentThread;
RestoreChangedContextToThread(currentThread, executionContext, executionContext3);
} internal static void RestoreChangedContextToThread(Thread currentThread, ExecutionContext contextToRestore, ExecutionContext currentContext)
{
currentThread._executionContext = contextToRestore;
}

既然将 StartHelper.executionContext 塞到了 currentThread._executionContext 中,在 <Main>b__1_0 方法中自然就能通过 _asyncLocal.Value 提取了。

三:总结

说了这么多,其实精妙之处在于创建OS线程的时候,会把C# Thread实例(coreclr对应线程) 作为参数传递给新线程,即下面方法签名中的 lpParameter 参数,新线程拿到了Thread实例,自然就能获取到被调用线程赋值的 Thread._executionContext 字段,所以这是完完全全的C#层面玩法,希望能给后来者解惑吧!


HANDLE CreateThread(
[in, optional] LPSECURITY_ATTRIBUTES lpThreadAttributes,
[in] SIZE_T dwStackSize,
[in] LPTHREAD_START_ROUTINE lpStartAddress,
[in, optional] __drv_aliasesMem LPVOID lpParameter,
[in] DWORD dwCreationFlags,
[out, optional] LPDWORD lpThreadId
);

C# AsyncLocal 是如何实现 Thread 间传值的更多相关文章

  1. 简单看看ThreadPool的源码以及从中看出线程间传值的另一种方法

    这几天太忙没时间写博客,今天回家就简单的看了下ThreadPool的源码,发现有一个好玩的东西,叫做”执行上下文“,拽名叫做:”ExecutionContext“. 一:ThreadPool的大概流程 ...

  2. Pyqt 窗体间传值

    窗体间传值网上有好多方法,比如新建文件,先将子类窗体的数据传到文件中,父窗体读取文件.  Signal&Slot机制进行传值 等等 在这里,我们就举个采用apply方法:Signal& ...

  3. iOS页面间传值的方式(Delegate/NSNotification/Block/NSUserDefault/单例)

    iOS页面间传值实现方法:1.通过设置属性,实现页面间传值:2.委托delegate方式:3.通知notification方式:4.block方式:5.UserDefault或者文件方式:6.单例模式 ...

  4. iOS页面间传值的方式(NSUserDefault/Delegate/NSNotification/Block/单例)

    iOS页面间传值的方式(NSUserDefault/Delegate/NSNotification/Block/单例) 实现了以下iOS页面间传值:1.委托delegate方式:2.通知notific ...

  5. ASP.NET 窗体间传值实现方法详解

    假设ParentForm.aspx 页面上有TextBox1文本框和Open按钮点击Open按钮弹出SubForm.aspx,SubForm.aspx页面上有TextBox1文本框和Close按钮点击 ...

  6. 【转】iOS页面间传值的方式(Delegate/NSNotification/Block/NSUserDefault/单例)-- 不错

    原文网址:http://www.cnblogs.com/JuneWang/p/3850859.html iOS页面间传值的方式(NSUserDefault/Delegate/NSNotificatio ...

  7. iOS 页面间传值 之 单例传值 , block 传值

    ios 页面间传值有许多,前边已经分享过属性传值和代理传值,今天主要说一下单例传值和 block 传值 单例传值:单例模式一种常用的开发的模式,单例因为在整个程序中无论在何时初始化对象,获取到的都是同 ...

  8. iOS 页面间传值 之 属性传值,代理传值

    手机 APP 运行,不同页面间传值是必不可少,传值的方式有很多(方法传值,属性传值,代理传值,单例传值) ,这里主要总结下属性传值和代理传值. 属性传值:属性传值是最简单,也是最常见的一种传值方式,但 ...

  9. iOS页面间传值的方式 (Delegate/NSNotification/Block/NSUserDefault/单例)

    iOS页面间传值的方式(Delegate/NSNotification/Block/NSUserDefault/单例)   iOS页面间传值的方式(NSUserDefault/Delegate/NSN ...

  10. iOS学习之界面间传值

    /** *  界面间传值步骤 1.界面传值第一种场场景:从前往后传值. 秘诀:属性传值.(葵花宝典). 招式:(1).在后一个界面定义属性,属性的类型和传出数据类型一致. (2).在进入下一界面之前, ...

随机推荐

  1. maptalks点线面图形样式设置经验总结

    个人偏好使用mapbox,但是架不住人多,被使用maptalks,然而的文档非常感人,让人泪崩三千里-- maptalks图形样式设置,通过symbol设置 设置symbol的,可以直接在 图形(Ma ...

  2. vue2升级vue3:Vue Router报错,directly inside <transition> or <keep-a

    vue3 报这个错误: vue-router.mjs:35 [Vue Router warn]: <router-view> can no longer be used directly ...

  3. 十大 CI/CD 安全风险(一)

    CI/CD 环境.流程和系统是现代软件组织的核心.他们将代码从开发工程师的工作站传递到生产环境.结合 DevOps 和微服务架构的兴起,CI/CD 系统和流程重塑了工程生态系统: 技术堆栈更加多样化, ...

  4. Bug定级实例

    *1级,**系统崩溃* *定义:*严重阻碍测试和开发工作 *对应**优先级**:**最高* *具体可分为:* 1.功能完全没有实现 2.应用闪退/崩溃无法运行 3*.应用必现安全模式,无法运行* 4. ...

  5. 最火前端Web组态软件(可视化)

    ​ 友情提示:本文为原创文章,转载请注明出处,商务合作请私信!!! 前言: 随着物联网.大数据等技术高速发展,我们逐步向数字化.可视化的人工智能(AI)时代的方向不断迈进.智能时代是工业 4.0 时代 ...

  6. 为什么 Go 和 Rust 语言都舍弃了继承?

    为什么go和rust语言都舍弃了继承? 舍弃了 Class 舍弃或弱化子类型 类的继承是一段儿弯路 OO 发明了继承,然后发现真正有意义的是 interface 的组合(更准确的说,是 Product ...

  7. Educational Codeforces Round 104 (Rated for Div. 2) A-E 个人题解

    比赛链接 1487A. Arena n 个 Hero,分别有 \(a_i\) 的初始等级.每次两个 Hero 战斗时:等级相同无影响,否则等级高的英雄等级+1.直到某个英雄等级到了 \(100^{50 ...

  8. oracle表空间已满解决

    在日常的oralce使用中最长遇到的问题就是oralce的表空间满了,数据无法写入报错,这种情况下通常是磁盘没有足够的空间或者表空间的数据文件达到32G(linux最大限制单个文件不超过32G)无法继 ...

  9. util工具函数

    1 /** 2 * @param {Function} fn 防抖函数 3 * @param {Number} delay 延迟时间 4 */ 5 export function debounce(f ...

  10. Linux性能分析——TOP命令详解

    Linux性能分析--TOP命令详解 1.Top命令介绍 Linux系统中,Top命令主要用于实时运行系统的监控,包括Linux内核管理的进程或者线程的资源占用情况. 这个命令对所有正在运行的进程和系 ...