【BZOJ4621】Tc605

Description

最初你有一个长度为 N 的数字序列 A。为了方便起见,序列 A 是一个排列。
你可以操作最多 K 次。每一次操作你可以先选定一个 A 的一个子串,然后将这个子串的数字全部变成原来这个子串的最大值。问最终有几种可能的数字序列。答案对 1e9+7 取模。

Input

第一行两个数 N 和 K。第二行 N 个数,描述一个排列 A。 
N,K<=500,
有6组数据N>100,有梯度

Output

输出一个数,表示答案在模域下的值。 

Sample Input

3 2
3 1 2

Sample Output

4

题解:好题。

先预处理出每个数左边和右边第一个比它大的数的位置ls,rs,然后将这个数看成一个区间,问题就变成了选出一些区间覆盖整个序列的方案数。用f[i][j]表示覆盖到位置i,已选择了j个区间的方案数。那么对于所有ls<=i<=rs,用$\sum\limits_{k=ls-1}^{i-1}f[k][j-1]$更新即可,显然可以用前缀和优化。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int P=1000000007;
int n,m,ans,sum;
int f[510][510],v[510];
int main()
{
scanf("%d%d",&n,&m);
int i,j,k,ls,rs;
for(i=1;i<=n;i++) scanf("%d",&v[i]);
f[0][0]=1;
for(i=1;i<=n;i++)
{
for(ls=i;ls>1&&v[ls-1]<v[i];ls--);
for(rs=i;rs<n&&v[rs+1]<v[i];rs++);
for(j=m;j>=0;j--)
{
f[i][j]=(f[i][j]+f[i-1][j])%P;
if(j)
{
sum=0;
for(k=ls;k<=rs;k++) sum=(sum+f[k-1][j-1])%P,f[k][j]=(f[k][j]+sum)%P;
f[i][j]=(f[i][j]-f[i-1][j-1]+P)%P;
}
}
}
for(i=0;i<=m;i++) ans=(ans+f[n][i])%P;
printf("%d",ans);
return 0;
}//3 2 1 2 3

【BZOJ4621】Tc605 DP的更多相关文章

  1. LG4719 【模板】动态dp 及 LG4751 动态dp【加强版】

    题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小 ...

  2. 【专题】数位DP

    [资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...

  3. 洛谷P4719 【模板】"动态 DP"&动态树分治

    [模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...

  4. LG5056 【模板】插头dp

    题意 题目背景 ural 1519 陈丹琦<基于连通性状态压缩的动态规划问题>中的例题 题目描述 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 输 ...

  5. 【专题】区间dp

    1.[nyoj737]石子合并 传送门:点击打开链接 描述    有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这 ...

  6. 【BZOJ4976】宝石镶嵌 DP

    [BZOJ4976]宝石镶嵌 Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升法杖的威力.不幸的是,小Q的法 ...

  7. NOJ 1111 保险箱的密码 【大红】 [区间dp]

    传送门 保险箱的密码 [大红] 时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte总提交 : 118            测 ...

  8. 【CF480D】Parcels DP

    [CF480D]Parcels 题意:有一个栈,有n个物品,每个物品可以选或不选.如果选了第i个物品,则获得$v_i$的收益,且第i个物品必须在$in_i$时刻入栈,$out_i$时刻出栈.每个物品还 ...

  9. 【BZOJ3791】作业 DP

    [BZOJ3791]作业 Description 众所周知,白神是具有神奇的能力的.比如说,他对数学作业说一声“数”,数学作业就会出于畏惧而自己完成:对语文作业说一声“语”,语文作业就会出于畏惧而自己 ...

随机推荐

  1. CSS3实现文字扫光效果

    本篇文章由:http://xinpure.com/css3-text-light-sweep-effect/ CSS3 实现的文字扫光效果,几乎可以和 Flash 相媲美了 效果解析 我们分析一下实现 ...

  2. C#指南,重温基础,展望远方!(3)类型和变量

    C# 有两种类型:值类型和引用类型. 值类型的变量直接包含数据,而引用类型的变量则存储对数据(称为“对象”)的引用.对于引用类型,两个变量可以引用同一对象:因此,对一个变量执行的运算可能会影响另一个变 ...

  3. openssl C语言编码实现rsa加密

    非原创, 引用自: 1 CC=gcc CPPFLAGS= -I /home/yyx//openssl-1.0.1t/include/ CFLAGS=-Wall -g LIBPATH = -L /usr ...

  4. jQuery改变label/input的值,改变class,改变img的src

    jQuery改变label/input的值.改变class,改变img的src jQuery改变label的值: $('#aID').text("New Value"); jQue ...

  5. 【软件project】——软工视频总结

    软件project是一门研究用project化方法构建和维护有效的.有用的和高质量的软件的学科.它涉及程序设计语言.数据库.软件开发工具.系统平台.标准.设计模式等方面. 软工,基本的六阶段:制定计划 ...

  6. CentOS源码编译安装Nginx

    安装编译用到的软件: yum install glib2-devel openssl-devel pcre-devel bzip2-devel gzip-devel 现在到http://nginx.o ...

  7. SSH整合简单例子

    说明:简单SSH整合,struts版本2.3.32,spring版本3.2.9,hibernate版本3.6.10 一.开发步骤 1 引jar包,创建用户library.使用的包和之前博文相同,可以参 ...

  8. Atitit.随时间变色特效 ---包厢管理系统的规划

    Atitit.随时间变色特效 ---包厢管理系统的规划 1 流程滴定仪 定义的参数 颜色.位置(开始值,结束值,当前比值) >>返回数值 可以后期处理转成双位16进制码 分别定义复合颜色的 ...

  9. C# 正则表达式替换制定关键词后面的所有内容

    如题,将 {OUTSCIPTE} 关键词后的所有内容替换为string.Empty(包含关键字)这个正则该怎么写?我是 {OUTSCIPTE}(.*)$ 写的但是什么反应也没有 string str= ...

  10. 接口测试脚本之Jsoup解析HTML

    第一次接触jsoup还是在处理收货地址的时候,当时在写一个下单流程,需要省市区id以及详细门牌号等等,因此同事介绍了jsoup,闲来无事,在此闲扯一番! 1.我们来看下,什么是jsoup,先来看看官方 ...