不等式

Time Limit: 10 Sec  Memory Limit: 128 MB

Description

  小z热衷于数学。
  今天数学课的内容是解不等式:L<=S*x<=R 。小z心想这也太简单了,不禁陷入了深深的思考:假如已知L,R,S,M ,满足L<=(S*x) mod M<=R 的最小正整数x该怎么求呢?

Input

  第一行包含一个整数T,表示数据组数,接下来是T行,每行为四个正整数M, S, L, R 。

Output

  对于每组数据,输出满足要求的x值,若不存在,输出-1 。

Sample Input

  1
  5 4 2 3

Sample Output

  2

HINT

  30%的数据中保证有解并且答案小于等于10^6;
  另外20%的数据中保证L=R;
  100%的数据中T<=100,M, S, L, R<=10^9。

Solution

  闷声放题解qwq。

  

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<bitset>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ; int T;
s64 M, S, L, R; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} s64 Dfs(s64 M, s64 S, s64 L, s64 R)
{
if(L > R || M < L) return -; S %= M;
int res = (L - )/S + ;
if(res * S <= R) return res; int l = (-R % S + S) % S, r = (-L % S + S) % S;
int y = Dfs(S, M, l , r); if(y == -) return -; int x = (R + M * y) / S;
if(L <= S * x - M * y) return x;
return -;
} int main()
{
T = get();
while(T--)
{
M = get(); S = get();
L = get(); R = get(); printf("%d\n", Dfs(M, S, L, min(R, M-)));
} }

【Foreign】不等式 [数论]的更多相关文章

  1. Some Conclusions.

    目录 DP 四边形不等式 数论 & 数学 数据结构 树链剖分 左偏树的性质及\(O(n)\)的构造 图论 树 二分图 竞赛图 平面图 双连通分量 字符串 后缀自动机 复杂度分析 没什么好写的. ...

  2. SGU 141.Jumping Joe 数论,拓展欧几里得,二元不等式 难度:3

    141. Jumping Joe time limit per test: 0.25 sec. memory limit per test: 4096 KB Joe is a frog who lik ...

  3. 【Foreign】置换 [数论][置换]

    置换 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 4 2 1 4 3 Sample O ...

  4. [自用]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 ...

  5. DAY 3 数论专场

    2019-07-23 今天的题目一个比一个神仙,很早之前就在讨论今天是不是晚上回宾馆就没脑子了,后来发现,是中午.... 一上午就讲了一个PPT,然而标题就两个子---数论... 这谁顶的住....整 ...

  6. Schur不等式(舒尔不等式)

    舒尔( Schur \texttt{Schur} Schur)不等式1 具体内容 Schur \texttt{Schur} Schur 不等式: x , y , z x,y,z x,y,z 为非负实数 ...

  7. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  8. Constraint6:更新外键约束(Foreign Key Constraint)的引用列

    在SQL Server中,表之间存在引用关系,引用关系通过创建外键约束(Foreign Key Constraint)实现.如果一个Table中的column被其他Table引用,那么该表是参考表,或 ...

  9. MySQL主从复制中断,报“Error on master: message (format)='Cannot delete or update a parent row: a foreign key constraint fails' error code=1217” 错误

    前几天,发现从库挂了,具体报错信息如下: 分析思路 1. 因为我采用的是选择性复制,只针对以下几个库进行复制: card,upay,deal,monitor,collect.所以,不太可能出现对于sa ...

随机推荐

  1. FZU.Software Engineering1816 · First Homework -Preparation

    Introduction 041602204 : 我是喜欢狗狗(particularly Corgi & Shiba Inu.)的丁水源 : 我的爱好是音乐.电影.英语(100%!!!!).吉 ...

  2. ava中普通代码块,构造代码块,静态代码块区别及示例

    //执行顺序:(优先级从高到低.)静态代码块>mian方法>构造代码块>构造方法. 其中静态代码块只执行一次.构造代码块在每次创建对象是都会执行. 1 普通代码块 //普通代码块:在 ...

  3. iOS-开发将文本复制到剪切板

    下面方法可以将文本复制到剪切板 UIPasteboard *pboard = [UIPasteboard generalPasteboard]; pboard.string = @"邀请码& ...

  4. C#控件DropDownList下拉列表默认打开

    c#中的控件DropDownList要实现默打开确实不容易,之前也是想过页面上的点击之后就打开了,那直接模拟点击不就行了,试过后大失所望,根本没有效果. 于是网上找到了一个例子能实现IE浏览器下的打开 ...

  5. 【Redis】- 双写一致性

    首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者 ...

  6. Centos安装TFTP/NFS/PXE服务器网络引导安装系统

    客户端网卡要求支持以PXE启动,配置都在服务端进行,通过PXE网络启动安装系统流程: 客户端以PXE启动发送DHCP请求: 服务器DHCP应答,包括客户端的IP地址,引导文件所在TFTP服务器: 客户 ...

  7. listBox和pictureBox的使用

    重要属性:pictureBox中SizeMode可以更改图像显示的尺寸大小. using System; using System.Collections.Generic; using System. ...

  8. [C/C++] 大小端存储问题

    首先来看一下今天做的一道题: 解析: union 维护足够的空间来置放多个数据成员中的“一种”,而不是为每一个数据成员配置空间,在union 中所有的数据成员共用一个空间,同一时间只能储存其中一个数据 ...

  9. htm中的 src未指定具体路径的话 默认查找当前文件夹

    htm中的 src未指定具体路径的话 默认查找当前文件夹

  10. P1297 [国家集训队]单选错位

    题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个 ...