前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加。例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等。

其实不动脑筋的话,用个二重循环很容易写出来:

def trans(m):
a = [[] for i in m[0]]
for i in m:
for j in range(len(i)):
a[j].append(i[j])
return a m = [[1, 2], [3, 4], [5, 6]] # 想象第一个列表是原始的,后面的是往里添加的
print trans(m) # result:[[1, 3, 5], [ 2, 4, 6]]

然而不管怎么看这种代码都很丑。

仔细看了一下m这种结构。等等,这不是字典的iteritems()的结果么?如果dict(m),那么结果——不就是keys()和values()么?

于是利用字典转换一下:

def trans(m):
d = dict(m)
return [d.keys(), d.values()]

可是再仔细想想,这里面有bug。如果添加列表的第一个元素相同,也就是转化之后dict的key相同,那肯定就不行了呀!况且,如果原始列表不是两个,而是多个,肯定不能用字典的呀!于是这种方法作罢,还是好好看看列表的形状。

然后又是一个不小心的发现:

这种转置矩阵的即时感是怎么回事?

没错,这个问题的本质就是求解转置矩阵。于是就简单了,还是用个不动脑筋的办法:

def trans(m):
for i in range(len(m)):
for j in range(i):
m[i][j], m[j][i] = m[j][i], m[i][j]
return m m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print trans(m)

其实还是有点bug的,看起来是好用的,然而这个矩阵要求行列长度相同才行。

最后,群里某大神说:如果只是转置矩阵的话,直接zip就好了。这才想起来zip的本质就是这样的,取出列表中的对应位置的元素,组成新列表,正是这个题目要做的。

所以最终,这个题目(转置矩阵)的python解法就相当奇妙了:

def trans(m):
return zip(*d)

没错,就这么简单。python的魅力。

用python实现矩阵转置的更多相关文章

  1. Python - 实现矩阵转置

    有个朋友提出了一个问题:手头上现在有一个二维列表,比如[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],现在要把该二维列表变成为[[1, 4, 7, 10 ...

  2. 用python实现矩阵转置,python3 中zip()函数

    前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加.例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再 ...

  3. [转]Python中的矩阵转置

    Python中的矩阵转置 via 需求: 你需要转置一个二维数组,将行列互换. 讨论: 你需要确保该数组的行列数都是相同的.比如: arr = [[1, 2, 3], [4, 5, 6], [7, 8 ...

  4. 关于python中矩阵的实现和矩阵的转置

    python中矩阵的实现是靠序列,,, 序列有很多形式, 其实矩阵是现实生活中的东西,把现实生活中的结构转换到程序中. 就需要有个实现的方法,而这种路径是多种多样的. 下面给出一个把矩阵转换成pyth ...

  5. Python小代码_5_二维矩阵转置

    使用列表推导式实现二维矩阵转置 matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] print(matrix) matrix_t = [[ro ...

  6. python 矩阵转置

    arrA=[[,,,],[,,,],[,,,],[,,,]] N= #声明4x4数组arr arrB=[[None] * N for row in range(N)] print('[原设置的矩阵内容 ...

  7. B-线性代数-矩阵转置

    [TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...

  8. <矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置>

    //矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置 #include<stdio.h> #include<stdlib.h> #define M 2 #define N 3 #d ...

  9. 【异构计算】OpenCL矩阵转置

    介绍 矩阵转置,主要的技巧还是利用好local memory ,防止local memory,以及glabol memory的读取尽量是合并读写. 完整代码一: main.cpp代码 #include ...

随机推荐

  1. uni-app 页面配置和跳转(一)转

    今天看Dcloud官网更新了个uni-app,据说一套代码三端发布(Android,iOS,微信小程序),果断一试. uni.navigateTo(OBJECT) 保留当前页面,跳转到应用内的某个页面 ...

  2. 原创:微信小程序java实现AES解密并获取unionId

    来自:微信小程序联盟 如果大家使用小程序的同时还在使用公众号的话,可能会用到unionId这种功能,由于公司业务需要,我们需要使用unionId,具体使用方法,请参考微信开放平台的说明,但是在微信小程 ...

  3. node.js缓存处理方式

    Node.JS缓存处理分为客户端和服务端两个部分. 客户端的缓存主要是利用浏览器对HTTP协议响应头中cache-control和expires字段的支持.浏览器在得到明确的响应头后,会将文件缓存在本 ...

  4. ES6之class 中 constructor 方法 和 super 的作用

    首先,ES6 的 class 属于一种“语法糖”,所以只是写法更加优雅,更加像面对对象的编程,其思想和 ES5 是一致的. function Point(x, y) { this.x = x; thi ...

  5. javascript获取元素样式值

    使用css控制页面有4种方式,分别为行内样式(内联样式).内嵌式.链接式.导入式. 行内样式(内联样式)即写在html标签中的style属性中,如<div style="width:1 ...

  6. BZOJ2882: 工艺(后缀数组)

    题意 题目链接 Sol 直接把序列复制一遍 后缀数组即可 在前\(N\)个位置中取\(rak\)最小的输出 #include<bits/stdc++.h> using namespace ...

  7. java压缩与解压

    一 概述 1.目录进入点 目录进入点是文件在压缩文件中的映射,代表压缩文件.压缩文件时,创建目录进入点,将文件写入该目录进入点.解压时,获取目录进入点,将该目录进入点的内容写入硬盘指定文件. 如果目录 ...

  8. HTML5 : 文件上传下载

    网站建设中,文件上传与下载在所难免,HTML5中提供的API在前端有着丰富的应用,完美的解决了各个浏览器的兼容性问题,所以赶紧get吧! FileList 对象和 file 对象 HTML 中的 in ...

  9. 第三次scrum作业!

    1.小组成员 舒 溢 许嘉荣 唐 浩 黄欣欣 廖帅元 刘洋江 薛思汝 2.个人在小组第三次冲刺任务及其完成情况描述 根据小组讨论所分配任务,积极辅助组长以及各个成员,理清思路,编写代码,尽量在规定时间 ...

  10. 使用Mist部署Contract到Rinkeby以太坊网络

    本文使用MyEthWallet新建一个账号,并导入到Mist中,然后部署Contract到Rinkeby网络使用MyEthWallet新建账号的好处是除了JSON文件之外,还能得到一张它生成的pdf( ...