【题解】HNOI2004敲砖块
题目传送门:洛谷1437
决定要养成随手记录做过的题目的好习惯呀~
这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态不好转移,也会产生后效性。
但是,通过将所有的砖块左移,我们可以发现(i, j)砖块所需要的条件就是(i-1, j) (i-1, j+1)这两块砖均被敲掉。
所以dp方程顺理成章:i,j,k分别表示从第i列j行开始算起,取k个数所能获得的最大价值和。
dp[i][j][s] = max(dp[i+1][s][k-j] +sum[第i列前j个数之和])(s>=j+1,<=该行最大数目)
#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define maxm 1500
int n, m, ans, sum[maxn][maxn], dp[maxn][maxn][maxm];
int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} int main()
{
n = read(), m = read();
for(int i = ; i <= n; i ++)
for(int j = ; j <= n - i + ; j ++)
sum[j][i] += read() + sum[j][i - ];
for(int i = n; i >= ; i --)
{
int len = n - i + ;
for(int j = ; j <= len; j ++)
for(int s = m; s >= max(, * j - ); s --)
for(int k = j - ; k <= len - ; k ++)
{
dp[i][j][s] = max(dp[i + ][k][s - j] + sum[i][j], dp[i][j][s]);
ans = max(ans, dp[i][j][s]);
}
}
printf("%d\n", ans);
return ;
}
【题解】HNOI2004敲砖块的更多相关文章
- Luogu 1437 [HNOI2004]敲砖块 (动态规划)
Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...
- 洛谷 P1437 [HNOI2004]敲砖块 解题报告
P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...
- P1437 [HNOI2004]敲砖块
题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...
- [HNOI2004]敲砖块
题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...
- 洛谷P1437 [HNOI2004]敲砖块(dp)
题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...
- yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块
题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...
- 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)
传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...
- 【[HNOI2004]敲砖块】
非常巧妙的\(dp\)顺序 这道题如果按照最正常的顺序来\(dp\)的话,显然是没有办法做的,后效性太大了 所以我们可以巧妙的改变\(dp\)的顺序 我们注意到一个位置\((i,j)\)要被打到的话就 ...
- 【洛谷 P1437】 [HNOI2004]敲砖块 (DP)
题目链接 毒瘤DP题 因为\((i,j)\)能不能敲取决于\((i-1,j)\)和\((i-1,j+1)\),所以一行一行地转移显然是有后效性的. 于是考虑从列入手.我们把这个三角形"左对齐 ...
随机推荐
- CF 643 E. Bear and Destroying Subtrees
E. Bear and Destroying Subtrees http://codeforces.com/problemset/problem/643/E 题意: Q个操作. 加点,在原来的树上加一 ...
- hive中 udf,udaf,udtf
1.hive中基本操作: DDL,DML 2.hive中函数 User-Defined Functions : UDF(用户自定义函数,简称JDF函数)UDF: 一进一出 upper lower ...
- Windows 显示环境变量
echo %% D:\>echo %python3% C:\Users\zy\AppData\Local\Programs\Python\Python36 D:\> 我的环境变量如下:
- DSP5509的XF实验-第一篇
1. 使用大道科技的EASY-DSP5509开发板,测试第一个例程,DSP_easy5509\Code-Easy5509\EX01_XF\XF 2. 直接编译,报出错误,在Problems窗口错误指示 ...
- Elastic stack ——X-Pack安装
X-Pack是一个Elastic Stack的扩展,将安全,警报,监视,报告和图形功能包含在一个易于安装的软件包中.在Elasticsearch 5.0.0之前,您必须安装单独的Shield,Watc ...
- Ruby 基础教程1-9
异常 1.异常结构 [ begin] ... rescue [retry] ... [ensure] . ...
- JDK1.8改为JDK1.7过程
电脑之前eclipse版本要求JDK1.8版本,现在要用jboss7.1做性能测试,目前仅支持JDK7.故需要降级. 网上有很多说把1.8删掉,这种做法我是不建议的,那么要用的时候呢?又得装回来多蛋疼 ...
- 「日常训练」Divisibility by Eight(Codeforces Round 306 Div.2 C)
题意与分析 极简单的数论+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #de ...
- Jmeter断言、参数化及集合点
JMeter---QPS(Query Per Second) QPS为每秒查询率.是一台查询服务器每秒能够处理的查询次数,在因特网上,作为域名系统服务器的性能经常用每秒查询率来衡量.步骤:1.添加线程 ...
- ConfigHelpers
--默认值可以不传 local ConfigHelpers = {} --设置物体高亮 target:设置对象 isLigth:是否高亮 seeThrough:是否穿透(默认为true,穿透) sta ...