[Data Structures and Algorithms - 1] Introduction & Mathematics
References:
1. Stanford University CS97SI by Jaehyun Park
3. Kuangbin's ACM Template
4. Data Structures by Dayou Liu
Getting Started:
1) What is a good algorithm?
The answer could be about correctness, time complexity, space complexity, readability, robustness, reusability, flexibility, etc.
However, in competitive programming, we care more about
- Correctness - It will result in Wrong Answer(WA)
- Time complexity - It will result in Time Limit Exceeded(TLE)
- Space complexity - It will result in Memory Limit Exceeded(MLE)
In algorithms contest, we need to pay attention to the time limit, memory limit, the range of input and output.
Example: A+B problem
int x;
int y;
cin >> x >> y;
cout << x+y;
1+2 is ok
1+999999999999999 will result in overflow
2) How to prove correctness?
- Prove by contradiction
- Prove by induction(Base case, inductive step)
Example: T(n) = T(n-1) + 1, T(1) = 0. Prove that T(n) = n - 1 for all n > 1 and n is an integer.
Proof:
(Base case) When n=1, T(1) = 1-1 = 0. It is correct.
(Inductive Step) Suppoer n = k, it is correct. T(k) = k - 1.
For n = k + 1, T(k+1) = T(k) + 1 = k - 1 + 1 = k. It is correct for n = k + 1.
Therefore, the algorithm is correct for all n > 0 and n is an integer.
O(1) < O(log n) < O(n) < O(nlog n) < O($n^2$) < O($n^3$) < O($2^n$)
1. Algebra
1.1 Simple Algebra Formulas:
$$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum_{k=1}^n k^3 = (\sum k)^2= (\frac{n(n+1)}{2})^2$$
1.2 Fast Exponentiation
How to calculate $x^k$?
$x^k = x*x*x...x$
Notice that:
$x*x = x^2$
$x^2 * x^2 = x^4$
...
double pow (double x, int k) {
if(k==0) return 1;
if(k==1) return x;
return k%2==0?pow(x,k/2)*pow(x,k/2):pow(x,k-1)*x;
}
(Important to consider special cases when you design an algorithm)
1) k is 0
2) k is 1
3) k is even and k is not 0
4) k is odd and k is not 1
2. Number Theory
2.1 Greatest Common Divisor(GCD)
gcd(x,y) - greatest integer divides both x and y.
- gcd(a,b) = gcd(a, b-a)
- gcd(a, 0) = a
- gcd(a,b) is the smallest positive number in{$ax+by | x, y \in \mathbb{Z} $ }
$x\equiv y\ (mod\ m) \Rightarrow a\%m=b\%m$
Properties:
If $a_1 \equiv b_1(mod\ m), a_2 \equiv b_2(mod m)$, then:
$a_1 +a_2 \equiv b_1+ b_2(mod\ m)$
$a_1 -a_2 \equiv b_1- b_2(mod\ m)$
$a_1 *a_2 \equiv b_1* b_2(mod\ m)$
- Euclidean algorithm
int gcd(int a, int b) {
while(b) {int r = a%b; a = b; b = r;}
return a;
}
- Extended Euclidean algorithm
Problem: Given a,b,c. Find integer solution x,y for ax+by=c.
If c % gcd(a,b) = 0, there are infinite many solutions. Otherwise, there is no solution.
long long extended_gcd(long long a, long long b, long long &x, long long &y) {
if(a==0 && b==0) return -1;
if(b==0) {x=1,y=0; return a;}
long long d=extended_gcd(b, a%b, y, x);
y -= a/b*x;
return d;
}
2.2 Prime Numbers
- For any N$\in \mathbb{Z} $,there is $N=p_1^{e1}p^{e2}_2...p^{er}_r$. And $p_1,p_2, ..., p_r$ are prime numbers. The number of factors for N is $(e1+1)(e2+1)...(er+1)$.
- Sieve's code
void getPrime(int n) {
int i, j;
bool flag[n + 1];
int prime[n + 1];
memset(flag, true, sizeof(flag)); // suppose they are all prime numbers
int count = 0; // the number of prime numbers
for(i = 2; i <= n; ++i) {
if(flag[i]) prime[++count] = i;
for(j = 1; j <= count && i*prime[j] <= n; j++) {
flag[i*prime[j]] = false;
if(i%prime[j] == 0) break;
}
}
}
2.3 Bionomial Coefficients
${n}\choose{k} $= $\frac{n(n-1)...(n-k+1)}{k!}$
Use when both n and k are small. Overflow risk.
2.4 Euler's Function
$n=p_1^{n_1} * p_2^{n_2} * ... p_k^{n_k}$
$\varphi(x) = x(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) $
int getPhi(int x)
{
float ans = x;
for (int p=2; p*p<=n; ++p){
if (x % p == 0){
while (x % p == 0)
x /= p;
ans*=(1.0-(1.0/p));
}
}
if (x > 1)
ans*=(1.0-(1.0/x));
return (int)ans;
}
Practice Problems: (HDU, POJ, UVa - https://vjudge.net/ ; LeetCode - leetcode.com)
POJ 1061, 1142, 2262, 2407, 1811, 2447
HDU 1060, 1124, 1299, 1452, 2608, 1014, 1019, 1108, 4651
LeetCode 204
UVa 294
[Data Structures and Algorithms - 1] Introduction & Mathematics的更多相关文章
- CSIS 1119B/C Introduction to Data Structures and Algorithms
CSIS 1119B/C Introduction to Data Structures and Algorithms Programming Assignment TwoDue Date: 18 A ...
- CSC 172 (Data Structures and Algorithms)
Project #3 (STREET MAPPING)CSC 172 (Data Structures and Algorithms), Spring 2019,University of Roche ...
- Basic Data Structures and Algorithms in the Linux Kernel--reference
http://luisbg.blogalia.com/historias/74062 Thanks to Vijay D'Silva's brilliant answer in cstheory.st ...
- 剪短的python数据结构和算法的书《Data Structures and Algorithms Using Python》
按书上练习完,就可以知道日常的用处啦 #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving wit ...
- 6-1 Deque(25 分)Data Structures and Algorithms (English)
A "deque" is a data structure consisting of a list of items, on which the following operat ...
- 学习笔记之Problem Solving with Algorithms and Data Structures using Python
Problem Solving with Algorithms and Data Structures using Python — Problem Solving with Algorithms a ...
- Algorithms & Data structures in C++& GO ( Lock Free Queue)
https://github.com/xtaci/algorithms //已实现 ( Implemented ): Array shuffle https://github.com/xtaci/al ...
- Persistent Data Structures
原文链接:http://www.codeproject.com/Articles/9680/Persistent-Data-Structures Introduction When you hear ...
- The Swiss Army Knife of Data Structures … in C#
"I worked up a full implementation as well but I decided that it was too complicated to post in ...
随机推荐
- Epub 阅读器 - iOS
因项目需求接触的 EPub 阅读器,前前后后尝试了很多库,最后找到了个相对兼容不错的展开了调试;其中对解压缩和数据加载方面进行了改造优化,使其更加的完美; 其大概原理是首先将 epub 文件解压后得到 ...
- 19-3-6Python中字典的解释、使用、嵌套
一.字典 为什么学字典: 列表的缺点: 1.列表如果存储的数据比较多,那么他的查询速度相对慢. 2.列表存储的数据关联性不强. 字典是什么: Python基础数据类型之一:字典. Python中唯一的 ...
- sort的用法
早一段时间一直没有理解sort的用法,在早几天终于是研究的明白的,所以就来分享一下,如果你也被这个方法困扰,没懂原理,可以看一下这遍文章,希望有所帮助. 第一种,最简单的排序,纯数字排序: var a ...
- mqtt使用二(集成到java代码中)
1.我采用的是springboot,首先pom文件中添加mqtt需要用到的依赖 <dependency> <groupId>org.springframework.boot&l ...
- itertools.groupby()分组字典列表
## itertools.groupby()分组字典列表数据 from operator import itemgetter from itertools import groupby student ...
- mysql的length与char_length的区别
length: 是计算字段的长度一个汉字是算三个字符,一个数字或字母算一个字符 char_length:不管汉字还是数字或者是字母都算是一个字符 同时这两个函数,可用于判断数据中是否有中文文字 例 ...
- STM32F407+STemwin学习笔记之STemwin移植
原文链接:http://www.cnblogs.com/NickQ/p/8748011.html 环境:keil5.20 STM32F407ZGT6 LCD(320*240) STemwin:S ...
- django的验证码
pip install Pillow==3.4.1在views.py中创建一个视图函数 from PIL import Image, ImageDraw, ImageFont from django. ...
- spark----词频统计(一)
利用Linux系统中安装的spark来统计: 1.选择目录,并创建一个存放文本的目录,将要处理的文本保存在该目录下以供查找操作: ① cd /usr/local ②mkdir mycode ③ cd ...
- u-boot.2012.10makefile分析,良心博友汇总
声明:以下内容大部分来自网站博客文章,仅作学习之用1.uboot系列之-----顶层Makefile分析(一)1.u-boot.bin生成过程分析 2.make/makefile中的加号+,减号-和a ...