References:

1. Stanford University CS97SI by Jaehyun Park

2. Introduction to Algorithms

3. Kuangbin's ACM Template

4. Data Structures by Dayou Liu

5. Euler's Totient Function


Getting Started:

1) What is a good algorithm?

The answer could be about correctness, time complexity, space complexity, readability, robustness, reusability, flexibility, etc.

However, in competitive programming, we care more about

  • Correctness - It will result in Wrong Answer(WA)
  • Time complexity - It will result in Time Limit Exceeded(TLE)
  • Space complexity - It will result in Memory Limit Exceeded(MLE)

In algorithms contest, we need to pay attention to the time limit, memory limit, the range of input and output.

Example: A+B problem

int x;
int y;
cin >> x >> y;
cout << x+y;

1+2 is ok

1+999999999999999 will result in overflow

2) How to prove correctness? 

  • Prove by contradiction
  • Prove by induction(Base case, inductive step)

Example: T(n) = T(n-1) + 1, T(1) = 0. Prove that T(n) = n - 1 for all n > 1 and n is an integer.

Proof:

(Base case) When n=1, T(1) = 1-1 = 0. It is correct.

(Inductive Step) Suppoer n = k, it is correct. T(k) = k - 1.

For n = k + 1, T(k+1) = T(k) + 1 = k - 1 + 1 = k. It is correct for n = k + 1.

Therefore, the algorithm is correct for all n > 0 and n is an integer.

3) Big O Noatation

O(1) < O(log n) < O(n) < O(nlog n) < O($n^2$) < O($n^3$) < O($2^n$)


1. Algebra 

1.1 Simple Algebra Formulas:

$$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^n k^3 = (\sum k)^2= (\frac{n(n+1)}{2})^2$$

1.2 Fast Exponentiation

How to calculate $x^k$?

$x^k = x*x*x...x$

Notice that:

$x*x = x^2$

$x^2 * x^2 = x^4$

...

double pow (double x, int k) {
if(k==0) return 1;
if(k==1) return x;
return k%2==0?pow(x,k/2)*pow(x,k/2):pow(x,k-1)*x;
}

(Important to consider special cases when you design an algorithm)

1) k is 0

2) k is 1

3) k is even and k is not 0

4) k is odd and k is not 1

2. Number Theory

 2.1 Greatest Common Divisor(GCD)

gcd(x,y) - greatest integer divides both x and y.

- gcd(a,b) = gcd(a, b-a)

- gcd(a, 0) = a

- gcd(a,b) is the smallest positive number in{$ax+by | x, y \in \mathbb{Z} $ }

$x\equiv y\ (mod\ m) \Rightarrow a\%m=b\%m$

Properties: 
If $a_1 \equiv b_1(mod\ m), a_2 \equiv b_2(mod m)$, then:
$a_1 +a_2 \equiv b_1+ b_2(mod\ m)$
$a_1 -a_2 \equiv b_1- b_2(mod\ m)$
$a_1 *a_2 \equiv b_1* b_2(mod\ m)$

  • Euclidean algorithm
int gcd(int a, int b) {
while(b) {int r = a%b; a = b; b = r;}
return a;
}
  • Extended Euclidean algorithm

Problem: Given a,b,c. Find integer solution x,y for ax+by=c.

If c % gcd(a,b) = 0, there are infinite many solutions. Otherwise, there is no solution.

long long extended_gcd(long long a, long long b, long long &x, long long &y) {
if(a==0 && b==0) return -1;
if(b==0) {x=1,y=0; return a;}
long long d=extended_gcd(b, a%b, y, x);
y -= a/b*x;
return d;
}

2.2 Prime Numbers

  • For any N$\in \mathbb{Z} $,there is $N=p_1^{e1}p^{e2}_2...p^{er}_r$. And $p_1,p_2, ..., p_r$ are prime numbers. The number of factors for N is $(e1+1)(e2+1)...(er+1)$.
  • Sieve's code
void getPrime(int n) {
int i, j;
bool flag[n + 1];
int prime[n + 1];
memset(flag, true, sizeof(flag)); // suppose they are all prime numbers
int count = 0; // the number of prime numbers
for(i = 2; i <= n; ++i) {
if(flag[i]) prime[++count] = i;
for(j = 1; j <= count && i*prime[j] <= n; j++) {
flag[i*prime[j]] = false;
if(i%prime[j] == 0) break;
}
}
}

2.3 Bionomial Coefficients

${n}\choose{k} $= $\frac{n(n-1)...(n-k+1)}{k!}$

Use when both n and k are small. Overflow risk.

2.4 Euler's Function

$n=p_1^{n_1} * p_2^{n_2} * ... p_k^{n_k}$
$\varphi(x) = x(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) $

int getPhi(int x)
{
float ans = x;
for (int p=2; p*p<=n; ++p){
if (x % p == 0){
while (x % p == 0)
x /= p;
ans*=(1.0-(1.0/p));
}
}
if (x > 1)
ans*=(1.0-(1.0/x));
return (int)ans;
}

Practice Problems: (HDU, POJ, UVa - https://vjudge.net/ ; LeetCode - leetcode.com)

POJ 1061, 1142, 2262, 2407, 1811, 2447

HDU 1060, 1124, 1299, 1452, 2608, 1014, 1019, 1108, 4651

LeetCode 204

UVa 294

[Data Structures and Algorithms - 1] Introduction & Mathematics的更多相关文章

  1. CSIS 1119B/C Introduction to Data Structures and Algorithms

    CSIS 1119B/C Introduction to Data Structures and Algorithms Programming Assignment TwoDue Date: 18 A ...

  2. CSC 172 (Data Structures and Algorithms)

    Project #3 (STREET MAPPING)CSC 172 (Data Structures and Algorithms), Spring 2019,University of Roche ...

  3. Basic Data Structures and Algorithms in the Linux Kernel--reference

    http://luisbg.blogalia.com/historias/74062 Thanks to Vijay D'Silva's brilliant answer in cstheory.st ...

  4. 剪短的python数据结构和算法的书《Data Structures and Algorithms Using Python》

    按书上练习完,就可以知道日常的用处啦 #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving wit ...

  5. 6-1 Deque(25 分)Data Structures and Algorithms (English)

    A "deque" is a data structure consisting of a list of items, on which the following operat ...

  6. 学习笔记之Problem Solving with Algorithms and Data Structures using Python

    Problem Solving with Algorithms and Data Structures using Python — Problem Solving with Algorithms a ...

  7. Algorithms & Data structures in C++& GO ( Lock Free Queue)

    https://github.com/xtaci/algorithms //已实现 ( Implemented ): Array shuffle https://github.com/xtaci/al ...

  8. Persistent Data Structures

    原文链接:http://www.codeproject.com/Articles/9680/Persistent-Data-Structures Introduction When you hear ...

  9. The Swiss Army Knife of Data Structures … in C#

    "I worked up a full implementation as well but I decided that it was too complicated to post in ...

随机推荐

  1. injection for Xcode10使用方法

    对于一个使用Xcode的使用者来说,麻烦的地方在于使用代码布置界面时候的调试,5s改一下代码,用10s查看修改效果,如果电脑配置稍低,时间更长,这是病,得治,哈哈.下面就来说一下injection的使 ...

  2. webpack之理解loader

    我们在写webpack配置文件的时候,应该有注意到经常用到loader这个配置项,那么loader是用来做什么的呢? loader其实是用来将源文件经过转化处理之后再输出新文件. 如果是数组形式的话, ...

  3. 洛谷P4525 【模板】自适应辛普森法1(simpson积分)

    题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛. 输入输出格式 输入格式: 一行,包含6个实数a,b,c,d,L,R 输出格式: 一行,积分值,保留至小数点后 ...

  4. python中的extend和append

    list.append(object) 向列表中添加一个对象object list.extend(sequence)  把一个序列seq的内容添加到列表中 old = ['a', 'b'] new = ...

  5. 常用模块 - datetime模块

    一.简介 datetime是Python处理日期和时间的标准库. 1.datetime模块中常用的类: 类名 功能说明 date 日期对象,常用的属性有year, month, day time 时间 ...

  6. Sass变量及嵌套

    1. 变量:SASS允许使用变量,所有变量以$开头. 变量声明:$highlight-color: #000; 注意:变量可以在css规则块定义之外存在.如下例子: $nav-color: #F90; ...

  7. 使用ansible安装lnmp

    主机互信 生成密钥对,并将公钥发送给其他需要操作的主机 ssh-keygen -t rsa cd /root/.ssh ssh-copy-id -i id_rsa.pub root@192.168.1 ...

  8. Python学习手册之字符类和元字符深入

    在上一篇文章中,我们介绍了 Python 的正则表达式和元字符,现在我们介绍 Python 的字符类和对元字符进行深入讲解.查看上一篇文章请点击:https://www.cnblogs.com/dus ...

  9. 实验6 shell程序设计一(2)

    编写一段bash shell程序, 根据键盘输入的学生成绩,显示相应的成绩登等级, 其中 60分以下为"Failed!", 60-69分为"Passed!", ...

  10. 安装使用supervisor来启动服务

    supervisor 使用方法 supervisor(官网)是一个unix的系统进程管理软件,可以用它来管理apache.nginx等服务, 若服务挂了可以让它们自动重启.当然也可以用来实现golan ...