References:

1. Stanford University CS97SI by Jaehyun Park

2. Introduction to Algorithms

3. Kuangbin's ACM Template

4. Data Structures by Dayou Liu

5. Euler's Totient Function


Getting Started:

1) What is a good algorithm?

The answer could be about correctness, time complexity, space complexity, readability, robustness, reusability, flexibility, etc.

However, in competitive programming, we care more about

  • Correctness - It will result in Wrong Answer(WA)
  • Time complexity - It will result in Time Limit Exceeded(TLE)
  • Space complexity - It will result in Memory Limit Exceeded(MLE)

In algorithms contest, we need to pay attention to the time limit, memory limit, the range of input and output.

Example: A+B problem

int x;
int y;
cin >> x >> y;
cout << x+y;

1+2 is ok

1+999999999999999 will result in overflow

2) How to prove correctness? 

  • Prove by contradiction
  • Prove by induction(Base case, inductive step)

Example: T(n) = T(n-1) + 1, T(1) = 0. Prove that T(n) = n - 1 for all n > 1 and n is an integer.

Proof:

(Base case) When n=1, T(1) = 1-1 = 0. It is correct.

(Inductive Step) Suppoer n = k, it is correct. T(k) = k - 1.

For n = k + 1, T(k+1) = T(k) + 1 = k - 1 + 1 = k. It is correct for n = k + 1.

Therefore, the algorithm is correct for all n > 0 and n is an integer.

3) Big O Noatation

O(1) < O(log n) < O(n) < O(nlog n) < O($n^2$) < O($n^3$) < O($2^n$)


1. Algebra 

1.1 Simple Algebra Formulas:

$$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^n k^3 = (\sum k)^2= (\frac{n(n+1)}{2})^2$$

1.2 Fast Exponentiation

How to calculate $x^k$?

$x^k = x*x*x...x$

Notice that:

$x*x = x^2$

$x^2 * x^2 = x^4$

...

double pow (double x, int k) {
if(k==0) return 1;
if(k==1) return x;
return k%2==0?pow(x,k/2)*pow(x,k/2):pow(x,k-1)*x;
}

(Important to consider special cases when you design an algorithm)

1) k is 0

2) k is 1

3) k is even and k is not 0

4) k is odd and k is not 1

2. Number Theory

 2.1 Greatest Common Divisor(GCD)

gcd(x,y) - greatest integer divides both x and y.

- gcd(a,b) = gcd(a, b-a)

- gcd(a, 0) = a

- gcd(a,b) is the smallest positive number in{$ax+by | x, y \in \mathbb{Z} $ }

$x\equiv y\ (mod\ m) \Rightarrow a\%m=b\%m$

Properties: 
If $a_1 \equiv b_1(mod\ m), a_2 \equiv b_2(mod m)$, then:
$a_1 +a_2 \equiv b_1+ b_2(mod\ m)$
$a_1 -a_2 \equiv b_1- b_2(mod\ m)$
$a_1 *a_2 \equiv b_1* b_2(mod\ m)$

  • Euclidean algorithm
int gcd(int a, int b) {
while(b) {int r = a%b; a = b; b = r;}
return a;
}
  • Extended Euclidean algorithm

Problem: Given a,b,c. Find integer solution x,y for ax+by=c.

If c % gcd(a,b) = 0, there are infinite many solutions. Otherwise, there is no solution.

long long extended_gcd(long long a, long long b, long long &x, long long &y) {
if(a==0 && b==0) return -1;
if(b==0) {x=1,y=0; return a;}
long long d=extended_gcd(b, a%b, y, x);
y -= a/b*x;
return d;
}

2.2 Prime Numbers

  • For any N$\in \mathbb{Z} $,there is $N=p_1^{e1}p^{e2}_2...p^{er}_r$. And $p_1,p_2, ..., p_r$ are prime numbers. The number of factors for N is $(e1+1)(e2+1)...(er+1)$.
  • Sieve's code
void getPrime(int n) {
int i, j;
bool flag[n + 1];
int prime[n + 1];
memset(flag, true, sizeof(flag)); // suppose they are all prime numbers
int count = 0; // the number of prime numbers
for(i = 2; i <= n; ++i) {
if(flag[i]) prime[++count] = i;
for(j = 1; j <= count && i*prime[j] <= n; j++) {
flag[i*prime[j]] = false;
if(i%prime[j] == 0) break;
}
}
}

2.3 Bionomial Coefficients

${n}\choose{k} $= $\frac{n(n-1)...(n-k+1)}{k!}$

Use when both n and k are small. Overflow risk.

2.4 Euler's Function

$n=p_1^{n_1} * p_2^{n_2} * ... p_k^{n_k}$
$\varphi(x) = x(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) $

int getPhi(int x)
{
float ans = x;
for (int p=2; p*p<=n; ++p){
if (x % p == 0){
while (x % p == 0)
x /= p;
ans*=(1.0-(1.0/p));
}
}
if (x > 1)
ans*=(1.0-(1.0/x));
return (int)ans;
}

Practice Problems: (HDU, POJ, UVa - https://vjudge.net/ ; LeetCode - leetcode.com)

POJ 1061, 1142, 2262, 2407, 1811, 2447

HDU 1060, 1124, 1299, 1452, 2608, 1014, 1019, 1108, 4651

LeetCode 204

UVa 294

[Data Structures and Algorithms - 1] Introduction & Mathematics的更多相关文章

  1. CSIS 1119B/C Introduction to Data Structures and Algorithms

    CSIS 1119B/C Introduction to Data Structures and Algorithms Programming Assignment TwoDue Date: 18 A ...

  2. CSC 172 (Data Structures and Algorithms)

    Project #3 (STREET MAPPING)CSC 172 (Data Structures and Algorithms), Spring 2019,University of Roche ...

  3. Basic Data Structures and Algorithms in the Linux Kernel--reference

    http://luisbg.blogalia.com/historias/74062 Thanks to Vijay D'Silva's brilliant answer in cstheory.st ...

  4. 剪短的python数据结构和算法的书《Data Structures and Algorithms Using Python》

    按书上练习完,就可以知道日常的用处啦 #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving wit ...

  5. 6-1 Deque(25 分)Data Structures and Algorithms (English)

    A "deque" is a data structure consisting of a list of items, on which the following operat ...

  6. 学习笔记之Problem Solving with Algorithms and Data Structures using Python

    Problem Solving with Algorithms and Data Structures using Python — Problem Solving with Algorithms a ...

  7. Algorithms & Data structures in C++& GO ( Lock Free Queue)

    https://github.com/xtaci/algorithms //已实现 ( Implemented ): Array shuffle https://github.com/xtaci/al ...

  8. Persistent Data Structures

    原文链接:http://www.codeproject.com/Articles/9680/Persistent-Data-Structures Introduction When you hear ...

  9. The Swiss Army Knife of Data Structures … in C#

    "I worked up a full implementation as well but I decided that it was too complicated to post in ...

随机推荐

  1. Jumpserver堡垒机搭建(脚本自动化)

    #!/bin/bash # coding: utf- # Copyright (c) set -e #返回值为非0时,退出脚本 echo "0. 系统的一些配置" setenfor ...

  2. Core Data实例

    #import <UIKit/UIKit.h> #import <CoreData/CoreData.h> @interface CHViewController : UIVi ...

  3. Jquery知识点总结(一)

    JQuery遍历1 传统的for   2 通过each对象调用callback函数 callback回调函数 /*    * JQ提供的技术,实现遍历    * JQ对象函数调用 each(参数 ca ...

  4. chromium之lazy_instance

    先看看介绍 // The LazyInstance<Type, Traits> class manages a single instance of Type, // which will ...

  5. PHP批量清理MIP-cache缓存(内附在线mipcache清理工具)

    MIP是什么?我就不多说了把. MIPCache 又是什么? 科普一下:MIPCache 是一套基于代理的 CDN 缓存系统.可用于缓存所有被某度相关页面引用或者从百度相关服务点出的 MIP 页面.当 ...

  6. inotify和epoll

    参考EventHub.cpp 1.初始化inotify int mINotifyFd = inotify_init(); 2.将要监测的目录添加到inotify int result = inotif ...

  7. openssl windows平台编译库

    首先感谢http://blog.csdn.net/YAOJINGKAO/article/details/53041165?locationNum=10&fps=1和https://www.cn ...

  8. STM32 uart 单线半双工模式(cube版本)

    STM32 uart 单线半双工模式(cube版本) 1.引言 在某些场合下需要进行三线制串口通信(信号线只有一根),这就要求进行单线半双工的模式进行通信.在这种情况进行数据协议传输的过程中,信号端需 ...

  9. Python习题(分页显示)

    class Page: def __init__(self, lst, pageSize): self.lst = lst # 数据 self.pageSize = pageSize # 每页显示多少 ...

  10. linux静态链接库

    库 库是写好的现有的,成熟的,可以复用的代码.现实中每个程序都要依赖很多基础的底层库,不可能每个人的代码都从零开始,因此库的存在意义非同寻常 本质上来说库是一种可执行代码的二进制形式,可以被操作系统载 ...