3224: Tyvj 1728 普通平衡树

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 3948  Solved: 1627
[Submit][Status][Discuss]

Description

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:
1. 插入x数
2. 删除x数(若有多个相同的数,因只删除一个)
3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
4. 查询排名为x的数
5. 求x的前驱(前驱定义为小于x,且最大的数)
6. 求x的后继(后继定义为大于x,且最小的数)

Input

第一行为n,表示操作的个数,下面n行每行有两个数opt和x,opt表示操作的序号(1<=opt<=6)

Output

对于操作3,4,5,6每行输出一个数,表示对应答案

Sample Input

10
1 106465
4 1
1 317721
1 460929
1 644985
1 84185
1 89851
6 81968
1 492737
5 493598

Sample Output

106465
84185
492737

HINT

1.n的数据范围:n<=100000
2.每个数的数据范围:[-1e7,1e7]
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
const int maxn=;
int key[maxn],lc[maxn],rc[maxn],fa[maxn],siz[maxn];
int tot,root;
int T;
void update(int x){
siz[x]=siz[lc[x]]++siz[rc[x]];
}
void r_rotate(int x){
int y=fa[x];
lc[y]=rc[x];
if(rc[x]!=) fa[rc[x]]=y;
fa[x]=fa[y];
if(y==lc[fa[y]]) lc[fa[y]]=x;
else rc[fa[y]]=x;
fa[y]=x; rc[x]=y;
update(x); update(y);
}
void l_rotate(int x){
int y=fa[x];
rc[y]=lc[x];
if(lc[x]!=) fa[lc[x]]=y;
fa[x]=fa[y];
if(y==lc[fa[y]]) lc[fa[y]]=x;
else rc[fa[y]]=x;
fa[y]=x; lc[x]=y;
update(x); update(y);
}
void splay(int x,int s){
int p;
while(fa[x]!=s){
p=fa[x];
if(fa[p]==s){
if(x==lc[p]) r_rotate(x);
else l_rotate(x);
break;
}
if(x==lc[p]){
if(p==lc[fa[p]]) r_rotate(p),r_rotate(x);
else r_rotate(x),l_rotate(x);
}
else{
if(p==rc[fa[p]]) l_rotate(p),l_rotate(x);
else l_rotate(x),r_rotate(x);
}
}
if(s==) root=x;
update(x);
}
int find(int v){//查找在这棵树中键值为v的节点
int x=root;
while(x!=){
if(v<key[x]) x=lc[x];
else if(v>key[x]) x=rc[x];
else if(v==key[x]){
splay(x,);
return x;
}
}
return -;
}
void New_node(int &x,int fath,int v){//建立新节点
x=++tot;
lc[x]=rc[x]=; siz[x]=;
fa[x]=fath;
key[x]=v;
}
void insert(int v){//插入新节点
if(root==){
New_node(rc[],,v);
root=tot;
return ;
}
int p,x=root;
while(x!=){
p=x;
if(v<=key[x]) siz[x]++,x=lc[x];
else siz[x]++,x=rc[x];
}
if(v<=key[p]) New_node(lc[p],p,v);
else New_node(rc[p],p,v);
splay(tot,);
}
int getmax(int x){//找到以x为根的最大值
if(rc[x]!=) return getmax(rc[x]);
return x;
}
int getmin(int x){//找到以x为根的最小值
if(lc[x]!=) return getmin(lc[x]);
return x;
}
int getpre(int x){//找到节点x的前驱
splay(x,);
return getmax(lc[x]);
}
int getne(int x){//找到节点x的后继
splay(x,);
return getmin(rc[x]);
}
void Delete(int v){
int x=find(v);
int pp=getmax(lc[x]);
int nn=getmin(rc[x]);
if(lc[x]==||rc[x]==){
if(lc[x]==&&rc[x]==){
root=; rc[]=;
return ;
}
if(lc[x]==){
rc[]=rc[x]; fa[rc[x]]=; root=rc[x]; rc[x]=;
siz[x]=;
return ;
}
else{
rc[]=lc[x]; fa[lc[x]]=; root=lc[x]; lc[x]=;
siz[x]=;
return ;
}
}
splay(pp,);
splay(nn,root);
fa[lc[nn]]=; siz[lc[nn]]=; lc[nn]=;
update(nn); update(pp);
}
int rank(int rt,int v){//返回键值为v的节点的排名
if(rt==) return ;
if(v<=key[rt]) return rank(lc[rt],v);
else return siz[lc[rt]]++rank(rc[rt],v);
}
int findkth(int x,int k){//在以x为根的树中找第 k大
if(siz[lc[x]]+==k) return key[x];
if(siz[lc[x]]+>k) return findkth(lc[x],k);
return findkth(rc[x],k-siz[lc[x]]-);
} int pred(int rt,int v){//返回比 v小的最大的数
if(rt==) return v;
if(v<=key[rt]) return pred(lc[rt],v);
else{
int ans=pred(rc[rt],v);
if(ans==v) return key[rt];
return ans;
}
}
int succ(int rt,int v){//返回比 v大的最小的数
if(rt==) return v;
if(v>=key[rt]) return succ(rc[rt],v);
else{
int ans=succ(lc[rt],v);
if(ans==v) return key[rt];
return ans;
}
}
int main(){
freopen("phs.in","r",stdin);
freopen("phs.out","w",stdout);
scanf("%d",&T);
while (T--){
int kin,num;
scanf("%d%d",&kin,&num);
if(kin==)
insert(num);//插入
else if(kin==)
Delete(num);//删除(若有多个相同的数,只删除一个)
else if(kin==)
printf("%d\n",rank(root,num));//查询num数的排名(若有多个相同的数,因输出最小的排名)
else if (kin==)
printf("%d\n",findkth(root,num));//查询排名为x的数
else if (kin==)
printf("%d\n",pred(root,num));
else if (kin==)
printf("%d\n",succ(root,num));
}
return ;
}

伸展树基础(Splay)的更多相关文章

  1. 伸展树(Splay Tree)进阶 - 从原理到实现

    目录 1 简介 2 基础操作 2.1 旋转 2.2 伸展操作 3 常规操作 3.1 插入操作 3.2 删除操作 3.3 查找操作 3.4 查找某数的排名.查找某排名的数 3.4.1 查找某数的排名 3 ...

  2. 伸展树(Splay)学习笔记

    二叉排序树能够支持多种动态集合操作,它可以被用来表示有序集合,建立索引或优先队列等.因此,在信息学竞赛中,二叉排序树应用非常广泛. 作用于二叉排序树上的基本操作,其时间复杂度均与树的高度成正比,对于一 ...

  3. 伸展树(Splay树)的简要操作

    伸展树(splay树),是二叉排序树的一种.[两个月之前写过,今天突然想写个博客...] 伸展树和一般的二叉排序树不同的是,在每次执行完插入.查询.删除等操作后,都会自动平衡这棵树.(说是自动,也就是 ...

  4. 数据结构(二) --- 伸展树(Splay Tree)

    文章图片和代码来自邓俊辉老师课件 概述 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由丹尼尔·斯立特Daniel Sleator ...

  5. 纸上谈兵:伸展树(splay tree)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...

  6. 伸展树(splay tree)

    伸展树的设计思路,鉴于数据访问的局部性(28原则)在实际应用中普遍存在,将按照"最常用者优先"的启发策略.尽管在最坏情况下其单次操作需要 O(n) 时间,但分摊而言仍然 O(log ...

  7. 伸展树(Splay)复杂度证明

    本文用势能法证明\(Splay\)的均摊复杂度,对\(Splay\)的具体操作不进行讲述. 为了方便本文的描述,定义如下内容: 在文中我们用\(T\)表示一棵完整的\(Splay\),并(不严谨地)用 ...

  8. 平衡树之伸展树(Splay Tree)题目整理

    目录 前言 练习1 BZOJ 3224 普通平衡树 练习2 BZOJ 3223 文艺平衡树 练习3 BZOJ 1588 [HNOI2002]营业额统计 练习4 BZOJ 1208 [HNOI2004] ...

  9. [转] Splay Tree(伸展树)

    好久没写过了,比赛的时候就调了一个小时,差点悲剧,重新复习一下,觉得这个写的很不错.转自:here Splay Tree(伸展树) 二叉查找树(Binary Search Tree)能够支持多种动态集 ...

随机推荐

  1. git & github 菜鸟笔记

    1.概念: 最先进的分布式版本控制系统 文件修改该提交的内容:---版本 文件名 用户 说明 日期 GitHub网站上线了,它为开源项目免费提供Git存储 --CVS及SVN都是集中式的版本控制系统, ...

  2. Android开发:《Gradle Recipes for Android》阅读笔记(翻译)5.4——使用Espresso测试Activity

    问题: 你想要使用Google的Espresso测试Activity. 解决方案: 在Gradle配置里面增加Espresso,书写测试脚本. 讨论: Espresso测试库已经被添加进“Androi ...

  3. win10下Import caffe时出现“ImportError: No module named google.protobuf.internal”的解决办法

    解决方法:只要出现和protobuf相关的错误,只要在cmd中输入pip install protobuf,然后等待安装完成即可. ps:这时,可能会出现"pip 不是内部命令"之 ...

  4. linux的bash与sh的区别

    转自:https://zhidao.baidu.com/question/305415121.html https://zhidao.baidu.com/question/176780008.html ...

  5. POJ 2609 Ferry Loading(双塔DP)

    Ferry Loading Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1807   Accepted: 509   Sp ...

  6. 解决scipy安装(pip install scipy)失败,以及其他问题

    解决scipy安装(pip install scipy)失败,以及其他问题 解决: 1.在scipy官方库中并没有适合Windows的python3.6相关版本,故需要在网址http://www.lf ...

  7. Go语言的一些资料汇总

    1. 8分钟了解你为什么应该学习Go语言 https://www.bilibili.com/video/av45561733/ 2.手把手教你从零开始搭建Go语言开发环境 https://www.bi ...

  8. 短URL DH 密钥交换算法

    w  追问:0-短URL 的时效性,(比如微信个人账户的永久二维码和群的约7天时效二维码):1-0中的时效性对于算法选择的影响,比如简单的HAS映射.sha1.md5......   https:// ...

  9. Jenkins+maven+Tomcat+SVN一键自动打包部署应用到服务器

    今天请教了大神,终于把jenkins给搞明白了 现在做下笔记,防止自己老年痴呆又忘了怎么配置 (截图可能不够清晰,有不清楚的随时评论打call) 机器配置: 安装配置规划 机器 192.168.169 ...

  10. 关于shared pool的深入探讨(五)

    Oracle使用两种数据结构来进行shared pool的并发控制:lock 和 pin.Lock比pin具有更高的级别. Lock在handle上获得,在pin一个对象之前,必须首先获得该handl ...