C - Mike and Chocolate Thieves

Description

Bad news came to Mike's village, some thieves stole a bunch of chocolates from the local factory! Horrible!

Aside from loving sweet things, thieves from this area are known to be very greedy. So after a thief takes his number of chocolates for himself, the next thief will take exactly k times more than the previous one. The value of k (k > 1) is a secret integer known only to them. It is also known that each thief's bag can carry at most n chocolates (if they intend to take more, the deal is cancelled) and that there were exactly four thieves involved.

Sadly, only the thieves know the value of n, but rumours say that the numbers of ways they could have taken the chocolates (for a fixed n, but not fixed k) is m. Two ways are considered different if one of the thieves (they should be numbered in the order they take chocolates) took different number of chocolates in them.

Mike want to track the thieves down, so he wants to know what their bags are and value of n will help him in that. Please find the smallest possible value of n or tell him that the rumors are false and there is no such n.

Input

The single line of input contains the integer m(1 ≤ m ≤ 1015) — the number of ways the thieves might steal the chocolates, as rumours say.

Output

Print the only integer n — the maximum amount of chocolates that thieves' bags can carry. If there are more than one n satisfying the rumors, print the smallest one.

If there is no such n for a false-rumoured m, print  - 1.

Sample Input

Input
1
Output
8
Input
8
Output
54
Input
10
Output
-1

Hint

In the first sample case the smallest n that leads to exactly one way of stealing chocolates is n = 8, whereas the amounts of stealed chocolates are (1, 2, 4, 8) (the number of chocolates stolen by each of the thieves).

In the second sample case the smallest n that leads to exactly 8 ways is n = 54 with the possibilities: (1, 2, 4, 8),  (1, 3, 9, 27),  (2, 4, 8, 16),  (2, 6, 18, 54),  (3, 6, 12, 24),  (4, 8, 16, 32),  (5, 10, 20, 40),  (6, 12, 24, 48).

There is no n leading to exactly 10 ways of stealing chocolates in the third sample case.

题意:

:四个小偷想偷巧克力。偷得方案符合如下规则:

巧克力无数,但小偷们的背包容量固定为n(每个小偷最多偷n块巧克力

第一个小偷随意拿,之后三个小偷按照签一个小偷的倍数拿,保证倍数一定。

譬如 1,2,4,8,第一个拿1块,之后每人拿前一人的二倍。 倍数>1

给出方案数目,问背包容量n为多少可以偷出这么多方案。

如果有多解,输出最少的背包容量。

分析:

先二分背包容量,

再枚举倍数的话,其实对于已知容量n,已知倍数x下。

能偷得方案数其实就是n/x 自然取整即可(求出此时的方案数)

方案数跟m比较 ,然后继续二分。

#include <iostream>
using namespace std;
long long slove(long long x,long long m)
{
long long tep=;
long long cnt=;
while()
{
long long c=tep*tep*tep;
if(c>x) return cnt;
cnt=cnt+x/c;
if(cnt>m) return cnt;
tep++; }
}
int main()
{
long long m;
cin>>m;
long long l,r;
long long ans=-;
l=;r=1e16;
while(l <= r)
{
long long mid=(l+r)/;
long long tmp=slove(mid,m);
if(tmp>=m)
{
r=mid-;
if(tmp==m) ans=mid;
} else l=mid+;
}
cout<<ans<<endl;
return ;
}

Codeforces Round #361 (Div. 2) C的更多相关文章

  1. Codeforces Round #361 (Div. 2) C.NP-Hard Problem

    题目连接:http://codeforces.com/contest/688/problem/C 题意:给你一些边,问你能否构成一个二分图 题解:二分图:二分图又称作二部图,是图论中的一种特殊模型. ...

  2. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  3. Codeforces Round #361 (Div. 2) D. Friends and Subsequences 二分

    D. Friends and Subsequences 题目连接: http://www.codeforces.com/contest/689/problem/D Description Mike a ...

  4. Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分

    C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...

  5. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  6. Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题

    A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...

  7. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  8. Codeforces Round #361 (Div. 2) D

    D - Friends and Subsequences Description Mike and !Mike are old childhood rivals, they are opposite ...

  9. Codeforces Round #361 (Div. 2) B

    B - Mike and Shortcuts Description Recently, Mike was very busy with studying for exams and contests ...

随机推荐

  1. 《转载》跟我学SpringMVC

    在线版目录 第一章 Web MVC简介 第二章 Spring MVC入门 第三章 DispatcherServlet详解 第四章 Controller接口控制器详解(1) 第四章 Controller ...

  2. Curator Zookeeper分布式锁

    Curator Zookeeper分布式锁 pom.xml中添加如下配置 <!-- https://mvnrepository.com/artifact/org.apache.curator/c ...

  3. swing中JTable的使用方法

    public static void main(String[] args) { Student s1 = new Student("张三", "001", 0 ...

  4. java类加载器及其委托机制

    1.什么是类加载器,类加载器父子结构.BootStrap-->ExtClassLoader-->AppClassLoader,级别依次降低 2.类加载器之间的父子关系和管辖范围 3.类加载 ...

  5. oracleDBA-D2

    1.超级管理员sys和system的区别: sys权限比system大,system无法查看到当前数据库是否运行在归档模式下,无法关闭数据库.sys是老大,system是老二. 2.OEM-oracl ...

  6. js实现返回顶部功能的解决方案

    很多网站上都有返回顶部的效果,主要有如下几种解决方案. 1.纯js,无动画版本 window.scrollTo(x-coord, y-coord); window.scrollTo(0,0); 2.纯 ...

  7. Xcode最好用的日志打印方法

    一般打印日志都是用的系统自带的NSLog来打印的,假如项目做完了,要上线了,这些打印的日志就会很浪费性能,网上有很多的解决办法,我也是感觉网上的还是有点不方便,所以就自己又修改了一下,分享给大家. 网 ...

  8. (3)WebApi客户端调用

    1.创建一个应用台控制程序,可以把Model的引用,用下面的方法拖拽上来(解决方案里没有这个文件,只是这个文件的引用)  2.Program.cs using System; using System ...

  9. 将 xunit.runner.dnx 的 xml 输出转换为 Nunit 格式

    由于目前 DNX 缺乏 XSLT 的转换能力,因此只能使用变通方法.具体参考这个链接 主要内容复制过来是: From @eriklarko on July 14, 2015 7:38 As a wor ...

  10. linux 命令 ---- 同步当前服务器时间

    原因:昨天临走前,虚拟机没有关机,是挂起状态,然后今天来的时候,发现数据库表中存(更新)的时间,不是系统时间, 解决:先运行起我们的虚拟机, (对于asterisk) 1.先查看当前服务器(linux ...