题目地址:http://poj.org/problem?id=3903

题目:

Description

The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very concerned about the evolution of the stock exchange. He follows stock prices every day looking for rising trends. Given a sequence of numbers p1, p2,...,pn representing stock prices, a rising trend is a subsequence pi1 < pi2 < ... < pik, with i1 < i2 < ... < ik. John’s problem is to find very quickly the longest rising trend.

Input

Each data set in the file stands for a particular set of stock prices. A data set starts with the length L (L ≤ 100000) of the sequence of numbers, followed by the numbers (a number fits a long integer). 
White spaces can occur freely in the input. The input data are correct and terminate with an end of file.

Output

The program prints the length of the longest rising trend. 
For each set of data the program prints the result to the standard output from the beginning of a line.

Sample Input

6
5 2 1 4 5 3
3
1 1 1
4
4 3 2 1

Sample Output

3
1
1

Hint

There are three data sets. In the first case, the length L of the sequence is 6. The sequence is 5, 2, 1, 4, 5, 3. The result for the data set is the length of the longest rising trend: 3.
 
 
思路:dp入门水题。n^2的算法肯定会T的。所以只能用nlogn的算法;
  c【i】:表示长度为i的上升子序列的最后一个值(也是序列中的最大值);
  从左向右扫描题目所给的数组,然后在c数组中二分查找第一个大于a【i】的位置,然后更新c数组。最后c数组的大小就是最长上升子序列的长度。
  具体见代码吧,,没看懂的话可以看我dp分类里的另一个上升子序列的题目。讲的更详细。
代码:
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
#define PB push_back
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
#define PI acos((double)-1)
#define E exp(double(1))
const int K=+;
int a[K],c[K];
int main(void)
{
int n,cnt;
while(cin>>n)
{
cnt=;
memset(c,,sizeof(c));
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
int d=lower_bound(c+,c++cnt,a[i])-c;
c[d]=a[i];
cnt=max(cnt,d);
}
cout<<cnt<<endl;
}
return ;
}

poj3903 Stock Exchange 二分+dp的更多相关文章

  1. POJ3903 Stock Exchange LIS最长上升子序列

    POJ3903 Stock Exchange #include <iostream> #include <cstdio> #include <vector> #in ...

  2. poj3903 Stock Exchange(最长上升子序列)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:id=3903">http://poj.org/problem?id=3903 Descrip ...

  3. POJ 3903:Stock Exchange(裸LIS + 二分优化)

    http://poj.org/problem?id=3903 Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  4. POJ3903:Stock Exchange(LIS)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87125#problem/E 题目: Description The world ...

  5. POJ 3903 Stock Exchange

    Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2954   Accepted: 1082 De ...

  6. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. 二分+DP HDU 3433 A Task Process

    HDU 3433 A Task Process Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  8. POJ - 3903 Stock Exchange(LIS最长上升子序列问题)

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descripti ...

  9. hdu 3433 A Task Process 二分+dp

    A Task Process Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

随机推荐

  1. 【BZOJ】3403: [Usaco2009 Open]Cow Line 直线上的牛(模拟)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3404 裸的双端队列.. #include <cstdio> #include <c ...

  2. 【BZOJ】3402: [Usaco2009 Open]Hide and Seek 捉迷藏(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3402 又是spfa水题.. #include <cstdio> #include < ...

  3. shell学习三十八天----运行顺序和eval

    运行顺序和eval shell从标准输入或脚本中读取的每一行称为管道,它包括了一个或多个命令,这些命令被一个或多个管道字符(|)隔开. 其实嗨哟非常多特殊符号可用来切割单个的命令:分号(;),管道(| ...

  4. VisualSVN 5.1.5 破解版 手动破解教程 生成dll文件

    VisualSVN 5.1.5 破解版 手动破解教程 生成VisualSVN.Core.L.dll文件 附上本人用到的命令: ildasm "D:\Program Files (x86)\V ...

  5. ORB特征提取与匹配

    ORB特征是目前最优秀的特征提取与匹配算法之一,下面具体讲解一下: 特征点的检测 图像的特征点可以简单的理解为图像中比较显著显著的点,如轮廓点,较暗区域中的亮点,较亮区域中的暗点等.ORB采用FAST ...

  6. servlet之模板方法和多线程

    接触了一小段时间的servlet,以下就总结一下关于servlet的两个方面的知识,一个是模板方法的应用.另外一个是servlet多线程产生的原因. 1. 模板方法设计模式 定义一个操作中的算法的骨架 ...

  7. cxGrid 显示行号及行号列列名

    cxGrid默认不显示行号,但是可以通过cxGrid1DBTableView1CustomDrawIndicatorCell事件来重绘行号 选中cxGrid1DBTableView1,在OnCusto ...

  8. JZOJ.5246【NOIP2017模拟8.8】Trip

    Description        多年之后,worldwideD厌倦竞争,隐居山林.       他的家乡开始发展起了旅游业,在一条很长的主干道上,有N个旅游景点,按顺序编号为1到N.根据游客们网 ...

  9. 【BZOJ3379】[Usaco2004 Open]Turning in Homework 交作业 DP

    [BZOJ3379][Usaco2004 Open]Turning in Homework 交作业 Description     贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶 ...

  10. [Algorithms] Counting Sort

    Counting sort is a linear time sorting algorithm. It is used when all the numbers fall in a fixed ra ...