题意:询问满足$1\leq x\leq n,1\leq y\leq m$且$x,y$均无平方因子的有序对$(x,y)$的$[x,y]$之和,多组数据

以下假设$n\leq m$,设$S(n)=\frac{n(n+1)}2$,$r(n)$表示$n$的最大无平方因子

$\begin{align*}\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu^2\left((i,j)\right)[i,j]&=\sum\limits_{d=1}^nd\mu^2(d)\sum\limits_{i=1}^{\left\lfloor\frac nd\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac md\right\rfloor}[i,j][(i,j)=1]\\&=\sum\limits_{d=1}^nd\mu^2(d)\sum\limits_{e=1}^{\left\lfloor\frac nd\right\rfloor}e\mu(e)\sum\limits_{i=1}^{\left\lfloor\frac n{de}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac m{de}\right\rfloor}[i,j]\\&=\sum\limits_{T=1}^nT\sum\limits_{d|T}\mu^2(d)\mu\left(\frac Td\right)\sum\limits_{i=1}^{\left\lfloor\frac nT\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac mT\right\rfloor}[i,j]\end{align*}$

暂停一下,先化一下其中的一部分式子

1.$G(n)=\sum\limits_{d|n}\mu^2(d)\mu\left(\frac nd\right)$

设$n=a^2b$,其中$\mu(b)\ne0$,那么仅当$d=ac$且$(a,c)=1$时$\mu^2(d)\mu\left(\frac nd\right)\ne0$(若$a\nmid d$则$\frac nd$含来自$a$的平方因子,若$(a,c)\ne1$则$d$含平方因子),此时$G(n)=\sum\limits_{c|b}\mu\left(\frac{a^2b}{ac}\right)=\mu(a)\sum\limits_{c|b}\mu\left(\frac bc\right)=\mu(a)[b=1]$,这说明当$n$为完全平方数时,$G(n)=\mu\left(\sqrt n\right)$,否则$G(n)=0$

2.$F(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m[i,j]$

直接把jzptab的式子搬过来,$F(n,m)=\sum\limits_{T=1}^nTS\left(\left\lfloor\frac nT\right\rfloor\right)S\left(\left\lfloor\frac mT\right\rfloor\right)\sum\limits_{e|T}e\mu(e)$

这里我们每次求答案都要求很多次$F$,所以还要继续推下去

$Q(n)=\sum\limits_{e|n}e\mu(e)$

首先显然$Q(n)=Q(r(n))$,因为$n$的平方因子对答案没有贡献,接下来考虑$n=r(n)$的情况,设$n=\prod\limits_{i=1}^kp_i$

当$n$为质数时$Q(n)=1-n$,因为$Q$是个积性函数,所以$Q(n)=\prod\limits_{i=1}^k(1-p_i)=(-1)^k\varphi(n)=\mu(n)\varphi(n)$,即是说对于一般的$n$有$Q(n)=\mu(r(n))\varphi(r(n))$

把以上两个结果代入到开始时的式子中,得到$\sum\limits_{p=1}^{\left\lfloor\sqrt n\right\rfloor}p^2\mu(p)\sum\limits_{q=1}^{\left\lfloor\frac n{p^2}\right\rfloor}qQ(q)S\left(\left\lfloor\frac n{p^2q}\right\rfloor\right)S\left(\left\lfloor\frac m{p^2q}\right\rfloor\right)$

枚举$T=p^2q$,得到$\sum\limits_{T=1}^nTS\left(\left\lfloor\frac nT\right\rfloor\right)S\left(\left\lfloor\frac mT\right\rfloor\right)\sum\limits_{p^2|T}\mu(p)Q\left(\frac T{p^2}\right)$

我们要预处理$D(n)=\sum\limits_{p^2|n}\mu(p)Q\left(\frac n{p^2}\right)$,这个直接枚举$p$去更新$p^2$的倍数即可,时间复杂度为$O\left(n\sum\limits_{i=1}^{\left\lfloor\sqrt n\right\rfloor}\frac1{i^2}\right)=O(n)$

总时间复杂度$O\left(n+T\sqrt n\right)$,这题还是挺棒的==

一个小小的trick:我们可以算出答案的$4$倍$\bmod2^{32}$的值,最后$\div4$即可,这样在求$S(n)$的时候不用$\div2$而且可以全程unsigned

#include<stdio.h>
typedef unsigned uint;
const int T=4000010;
int min(int a,int b){return a<b?a:b;}
void swap(int&a,int&b){a^=b^=a^=b;}
int pr[T+10],r[T+10],mu[T+10],phi[T+10];
bool np[T+10];
uint D[T+10];
void sieve(){
	int i,j,M;
	M=0;
	r[1]=1;
	mu[1]=1;
	phi[1]=1;
	for(i=2;i<=T;i++){
		if(!np[i]){
			pr[++M]=i;
			r[i]=i;
			mu[i]=-1;
			phi[i]=i-1;
		}
		for(j=1;j<=M&&i*pr[j]<=T;j++){
			np[i*pr[j]]=1;
			if(i%pr[j]==0){
				r[i*pr[j]]=r[i];
				phi[i*pr[j]]=phi[i]*pr[j];
				break;
			}
			r[i*pr[j]]=r[i]*pr[j];
			mu[i*pr[j]]=-mu[i];
			phi[i*pr[j]]=phi[i]*(pr[j]-1);
		}
	}
	for(i=1;i*i<=T;i++){
		if(mu[i]){
			for(j=i*i;j<=T;j+=i*i)D[j]+=mu[i]*mu[r[j/(i*i)]]*phi[r[j/(i*i)]];
		}
	}
	for(i=1;i<=T;i++)D[i]=D[i]*i;
	for(i=1;i<=T;i++)D[i]+=D[i-1];
}
uint S(uint n){return n*(n+1);}
uint solve(int n,int m){
	uint s;
	int i,nex;
	for(i=1;i<=n;i=nex+1){
		nex=min(n/(n/i),m/(m/i));
		s+=(D[nex]-D[i-1])*S(n/i)*S(m/i);
	}
	return s;
}
int main(){
	sieve();
	int T,n,m;
	scanf("%d",&T);
	while(T--){
		scanf("%d%d",&n,&m);
		if(n>m)swap(n,m);
		printf("%u\n",solve(n,m)>>2);
	}
}

[CODECHEF]LCM的更多相关文章

  1. scau 2015寒假训练

    并不是很正规的.每个人自愿参与自愿退出,马哥找题(马哥超nice么么哒). 放假第一周与放假结束前一周 2015-01-26 http://acm.hust.edu.cn/vjudge/contest ...

  2. CodeChef Sereja and LCM(矩阵快速幂)

    Sereja and LCM   Problem code: SEALCM   Submit All Submissions   All submissions for this problem ar ...

  3. CC Subarray LCM (数学)

    题目连接:http://www.codechef.com/problems/SUBLCM 题意:给定一个序列,求最长连续子序列满足 LCM(Ai,Ai+1...Aj) =Ai*Ai+1*...*Aj. ...

  4. Codechef September Challenge 2018 游记

    Codechef September Challenge 2018 游记 Magician versus Chef 题目大意: 有一排\(n(n\le10^5)\)个格子,一开始硬币在第\(x\)个格 ...

  5. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  6. CodeBlocks及LCM应用

    以下是在开发过程中遇到的一些细节点: 1)called after throwing an instance of std::bad_alloc 此问题是由于publish(data),当中data赋 ...

  7. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  8. LCM 轻量级通信组件

    LCM和ZMQ比较 http://www.doc88.com/p-6711552253536.html 基于LCM和ZeroMQ的进程间通信研究 2.简介 LCM(Lightweight Commuc ...

  9. uva12546. LCM Pair Sum

    uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...

随机推荐

  1. appcan UI

    appcan UI 公共类 ([appcanUI框架地址:](http://newdocx.appcan.cn/UI/source) .ub { display: -webkit-box !impor ...

  2. NOI2018游记&我的OI历程

    day1 今天是报到日,坐着早上9点的飞机到了长沙,午饭时间到达雅礼洋湖. 宿舍还是一模一样,虽然是在女生宿舍. wifi信号还是一样的德行,刻意避开了宿舍内,只好把手机放在窗台上开热点. 饭菜还是如 ...

  3. perl6中字符串字母编历

    use v6; my $input = prompt '输入字符串:'; for $input.words -> $word { say $word; } for $input.comb -&g ...

  4. Redis 3.0 编译安装

    Redis 3.0 编译安装 http://www.xuchanggang.cn/archives/991.html

  5. 蓝屏代码0X0000007B可能是SATA mode问题

    Win7蓝屏代码0X0000007B可能是硬盘模式的问题,我进入BIOS把SATA的mode从Enhanced改为Compatible(及IDE兼容模式)结果系统可以顺利启动没有问题.       从 ...

  6. win7下安装 LINUX虚拟机

    文件名: VMware-workstation-full-10.0.6-2700073.exe 百度云共享链接: pan.baidu.com/s/1o6McGmI VMware workstation ...

  7. List转换为DataTable List<Entity>

    /// <summary> /// 将List转换成DataTable /// </summary> /// <typeparam name="T"& ...

  8. poj 2593&&poj2479(最大两子段和)

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16850   Accepted: 7054 Des ...

  9. hdu 1081(最大子矩阵)

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  10. 【转载】 ftp 命令行

    原文在这里. 本文中,介绍在 Linux shell 中如何使用 ftp 命令.包括如何连接 FTP 服务器,上传或下载文件以及创建文件夹.尽管现在有许多不错的 FTP 桌面应用,但是在服务器.SSH ...