[ tarjan + dfs ] poj 2762 Going from u to v or from v to u?
题目链接:
http://poj.org/problem?id=2762
Going from u to v or from v to u?
Description
In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one to the other. The son can either
go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything? Input
The first line contains a single integer T, the number of test cases. And followed T cases.
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly. Output
The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.
Sample Input 1 Sample Output Yes Source |
[ problem_id=2762" style="text-decoration:none">Submit
[Discuss]
题目意思:
给一幅图。推断随意两点v,u是否可到达.(u->v或v->u)都能够。
解题思路:
tarjan+dfs
先求有向图强连通分量。然后缩点建图,统计入度为0的联通分量个数。超过1肯定不行。
然后对搜索子树dfs,假设某一节点有超过一个儿子。则这两个儿子之间不能到达,不行。
代码:
//#include<CSpreadSheet.h> #include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; #define Maxn 1100 int low[Maxn],dfn[Maxn],sc,bc,sta[Maxn];
int n,m,dep,dei[Maxn],in[Maxn];
bool iss[Maxn];
vector<vector<int> >myv;
vector<vector<int> >tree;
bool hae[Maxn][Maxn];
int ans; void tarjan(int cur)
{
int ne;
low[cur]=dfn[cur]=++dep;
sta[++sc]=cur;
iss[cur]=true; for(int i=0;i<myv[cur].size();i++)
{
ne=myv[cur][i];
if(!dfn[ne])
{
tarjan(ne);
if(low[ne]<low[cur])
low[cur]=low[ne];
}
else if(iss[ne]&&dfn[ne]<low[cur])
low[cur]=dfn[ne];
}
if(low[cur]==dfn[cur])
{
++bc;
do
{
ne=sta[sc--];
iss[ne]=false;
in[ne]=bc;
}while(ne!=cur);
}
}
void solve()
{
dep=sc=bc=0;
memset(iss,false,sizeof(iss));
memset(dfn,0,sizeof(dfn)); for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
}
void dfs(int cur)
{
if(ans>2)
return ;
int res=0; for(int i=0;i<tree[cur].size();i++)
{
int ne=tree[cur][i];
res++;
dfs(ne);
}
if(res>=2)
ans=INF;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); int t; scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
myv.clear();
myv.resize(n+1);
memset(dei,0,sizeof(dei));
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
myv[a].push_back(b);
}
solve();
tree.clear();
tree.resize(bc+1);
memset(hae,false,sizeof(hae));
for(int i=1;i<=n;i++)
{
for(int j=0;j<myv[i].size();j++)
{
int ne=myv[i][j];
if(in[i]!=in[ne])
{
dei[in[ne]]++;
if(!hae[in[i]][in[ne]])
{
hae[in[i]][in[ne]]=true;
tree[in[i]].push_back(in[ne]);
}
} }
}
ans=0;
for(int i=1;i<=bc;i++)
if(!dei[i])
{
ans++;
dfs(i);
if(ans>1)
break;
} if(ans==1)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
[ tarjan + dfs ] poj 2762 Going from u to v or from v to u?的更多相关文章
- POJ 2762 tarjan缩点+并查集+度数
Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15494 ...
- POJ 2762 Going from u to v or from v to u? Tarjan算法 学习例题
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17104 Accepted: 4594 Description In o ...
- POJ 2762 Going from u to v or from v to u? (Tarjan) - from lanshui_Yang
Description In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has ...
- POJ 2762 Going from u to v or from v to u?- Tarjan
Description 判断一个有向图是否对于任意两点 $x$, $y$ 都有一条路径使$x - >y$或 $y - >x$ Solution 对于一个强联通分量内的点 都是可以互相到达 ...
- poj 2762(tarjan缩点+判断是否是单链)
Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19234 ...
- poj 2762(强连通+判断链)
题目链接:http://poj.org/problem?id=2762 思路:首先当然是要缩点建新图,由于题目要求是从u->v或从v->u连通,显然是要求单连通了,也就是要求一条长链了,最 ...
- POJ 2762 Going from u to v or from v to u? (强连通分量缩点+拓扑排序)
题目链接:http://poj.org/problem?id=2762 题意是 有t组样例,n个点m条有向边,取任意两个点u和v,问u能不能到v 或者v能不能到u,要是可以就输出Yes,否则输出No. ...
- poj 2762 Going from u to v or from v to u?(强连通分量+缩点重构图+拓扑排序)
http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: ...
- POJ 2762 Going from u to v or from v to u?(强连通分量+拓扑排序)
职务地址:id=2762">POJ 2762 先缩小点.进而推断网络拓扑结构是否每个号码1(排序我是想不出来这点的. .. ).由于假如有一层为2的话,那么从此之后这两个岔路的点就不可 ...
随机推荐
- Android 通过URL scheme 实现点击浏览器中的URL链接,启动特定的App,并调转页面传递参数
点击浏览器中的URL链接,启动特定的App. 首先做成HTML的页面,页面内容格式如下: <a href="[scheme]://[host]/[path]?[query]" ...
- OCP升级(3.6->3.7)
有个好文档还是靠普很多,感谢同事的文档.升级步骤记录如下 1.检查现有环境 [root@master ~]# etcd --version etcd Version: Git SHA: 1674e68 ...
- Kubernetes下的应用监控解决方案
所谓应用监控,更多的是基于java jvm的监控,因为公司运行的中间件大部分都是基于tomcat,Springboot,SpringCloud,当然也必须支持WebLogic.在Kubernetes现 ...
- 关于TagHelper的那些事情——Microsoft.AspNet.Mvc.TagHelpers介绍
写在开始 在上一篇文章中,简单介绍了什么是TagHelper,怎么使用它.接下来我会简单介绍一下微软随着ASP.NET5一起发布的TagHelpers.它们分别是: AnchorTagHelper C ...
- jdo pom
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- rootkit后门之安装流程
1.首先是获得远程服务器的root权限 2.然后下载rootkit程序,本文用到的是mafix (下载前最好把杀毒软件关掉,基本上会报毒的!) 3.开始安装 tar -xvzf mafix.tar.g ...
- oracle 10g函数大全--数值型函数
ABS(x) [功能]返回x的绝对值 [参数]x,数字型表达式 [返回]数字 [示例] select abs(100),abs(-100) from dual; sign(x) [功能]返回x的正负值 ...
- tag subshader shaderlab
unity的黑科技 https://docs.unity3d.com/Manual/SL-SubShaderTags.html 这里 reflectCamera.RenderWithShader(re ...
- C++11常用特性的使用经验总结(转载)
C++11已经出来很久了,网上也早有很多优秀的C++11新特性的总结文章,在编写本博客之前,博主在工作和学习中学到的关于C++11方面的知识,也得益于很多其他网友的总结.本博客文章是在学习的基础上,加 ...
- 从服务端架构设计角度,深入理解大型APP架构升级
随着智能设备普及和移动互联网发展,移动端应用逐渐成为用户新入口,重要性越来越突出.但企业一般是先有PC端应用,再推APP,APP 1.0版的功能大多从现有PC应用平移过来,没有针对移动自身特点考虑AP ...