【FFT】BZOJ2179- FFT快速傅立叶
【题目大意】
给出n位十进制a和b,求a*b。
【思路】
FFT。感觉弄起来比较麻烦,不如直接背板子。
注意一下MAXN的取值,我一开始非常随意地就写了60000*2+50,其实n是要扩展到最接近的2的次幂的,所以要取到2^17
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<complex>
#include<cmath>
#define pi acos(-1)
using namespace std;
const int MAXN=131072+5;
typedef complex<double> com;
int n,m,L;
com a[MAXN],b[MAXN];
int c[MAXN],Rev[MAXN]; void get_bit(){for (n=,L=;n<m;n<<=) L++;}
void get_Rtable(){for (int i=;i<n;i++) Rev[i]=(Rev[i>>]>>)|((i&)<<(L-));}
void multi(com* a,com* b){for (int i=;i<n;i++) a[i]*=b[i];} void FFT(com* a,int flag)
{
for (int i=;i<n;i++)if(i<Rev[i])swap(a[i],a[Rev[i]]); //利用逆序表,快速求逆序
for (int i=;i<n;i<<=)
{
com wn(cos(*pi/(i*)),flag*sin(*pi/(i*)));
for (int j=;j<n;j+=(i<<))
{
com w(,);
for (int k=;k<i;k++,w*=wn)
{
com x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;
a[j+k+i]=x-y;
}
}
}
if (flag==-) for (int i=;i<n;i++) a[i]/=n;
} void init()
{
char str[MAXN];
scanf("%d",&n);
scanf("%s",str);
for (int i=;i<n;i++) a[i]=str[n--i]-'';
scanf("%s",str);
for (int i=;i<n;i++) b[i]=str[n--i]-'';
} void solve()
{
m=n<<;//相乘后的位数是原来的2倍
get_bit();
get_Rtable();//求逆序表:末位为0,直接为其前一半逆序表的值右移一位,末位为1,在最高位添加1
FFT(a,),FFT(b,);//分别将a与b的系数表达式转为点值表达式
multi(a,b);//点值表达式相乘
FFT(a,-);//将相乘后的点值表达式转为系数表达式 } void print()
{
for(int i=;i<m;i++) c[i]=(int)(a[i].real()+0.5);
for (;c[m-]==;m--); //把前置的0清空
for (int i=;i<m;i++)
{
if (c[i]>=)
{
c[i+]+=c[i]/;
c[i]%=;
if (i==m-) m++;
}
}
for (int i=m-;i>=;i--) printf("%d",c[i]);
} int main()
{
init();
solve();
print();
return ;
}
【FFT】BZOJ2179- FFT快速傅立叶的更多相关文章
- 【BZOJ2179】FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...
- [bzoj2179]FFT快速傅立叶_FFT
FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- bzoj2179: FFT快速傅立叶
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...
- BZOJ 2179: FFT快速傅立叶
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2923 Solved: 1498[Submit][Status][Di ...
- 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶
第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...
- BZOJ_2179_FFT快速傅立叶_(FFT)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2179 超大整数乘法 分析 FFT模板题. 把数字看成是多项式,x是10.然后用FFT做多项式乘 ...
- 离散傅立叶变换与快速傅立叶变换(DFT与FFT)
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...
- 快速傅立叶变换(FFT)算法
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...
随机推荐
- 20151024_002_C#基础知识(ArrayList,Hashtable,List,Dictionary)
1:ArrayList 和 Hashtable(哈希表) 1.1:ArrayList ArrayList list = new ArrayList(); list.Add(); list.AddRan ...
- js 重置表单
//方法一document.getElementById("myform").reset(); //方法二 ].reset(); //方法三 使用input按钮 <input ...
- ie8下trim失效
1.ie8下使用trim失效 trim可以除去字符串两侧的空白字符,但ie8并不支持 2.解决方案 String.prototype.trim = function () { return this ...
- 分类算法:决策树(C4.5)(转)
C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点: 1)用信息增益率来选择属性.ID3选择属性用的是子树的信息增益,这里 ...
- perl中设置POST登录时的重定向
默认地, perl提交post登录时是不会重定向的 要让它重定向, 可以用如下方法: my $cookie = HTTP::Cookies->new(); push @{$ua->requ ...
- Caffe学习笔记3
Caffe学习笔记3 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和h ...
- monkey测试===通过monkey测试检查app内存泄漏和cpu占用
最近一直在研究monkey测试.网上资料很多,但都是一个抄一个的.原创的很少 我把检查app内存泄漏的情况梳理一下: 参考资料: Monkey测试策略:https://testerhome.com/t ...
- 在linux内核中获得比jiffies精度更高的时间值【转】
转自:http://blog.chinaunix.net/uid-20672257-id-2831219.html 内核一般通过jiffies值来获取当前时间.尽管该数值表示的是自上次系统启动到当前的 ...
- [New learn]AutoLayout调查基于code
代码https://github.com/xufeng79x/TestAutolayout-code2 0.插在前面 必须关闭view的自动缩放掩码,自动缩放掩码是autolayout出现之前系统管理 ...
- HDU-2243
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...