对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。

所以,n以内的反质数即为不超过n的约数个数最多的数。
怎样计算约数个数?
约数个数定理:
对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,
则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .
其中a1、a2、a3…ak是p1、p2、p3,…pk的指数。
 
所以,只需枚举一个数的所有质因数就行。
 
最多用到的 不同的 质因数 有多少呢?
 
∵2*3*5*7*11*13*17*19*23*29>2000000000
 
∴最多只用用到这么多不同的质因数。
 
搜索即可。
 
加两个剪枝:
①从小到大枚举质因数,不要让 顺序不同的 算作不同的方案。
 
②小的因数的指数必然大于大的因数的指数,
∵<1>约数个数相同时,小的数更优。
<2>大的数与小的数有相同的因数个数时,根据定义,大的数压根不是反质数了。
Code:
 #include<cstdio>
#include<iostream>
using namespace std;
const int prime[]={,,,,,,,,,,};
int n,Time[],sum;
long long ans;
int Calc()
{
int res=;
for(int i=;i<=;i++)
res*=(Time[i]+);
return res;
}
void dfs(long long now,int last)
{
if(now>n)
return;
int tmp=Calc();
if(sum<tmp||(sum==tmp&&now<ans)){sum=tmp;ans=now;}
for(int i=;i<=;i++)
if(Time[i]<Time[i-]&&i>=last)
{
Time[i]++;
dfs(now*prime[i],i);
Time[i]--;
}
}
int main()
{
scanf("%d",&n);
Time[]=;
dfs(,);
cout<<ans<<endl;
return ;
}

【搜索】【约数个数定理】[HAOI2007]反素数ant的更多相关文章

  1. bzoj 1053: [HAOI2007]反素数ant 搜索

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Sta ...

  2. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  3. [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1907  Solved: 1069[Submit][St ...

  4. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  5. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  6. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

  7. 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3480  Solved: 2036[Submit][St ...

  8. 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)

    1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...

  9. 【BZOJ1053】[HAOI2007]反素数ant 暴力

    [BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...

  10. BZOJ(8) 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4118  Solved: 2453[Submit][St ...

随机推荐

  1. VS推荐插件

    以下插件均可在NuGet下载 Smooth Scroll 平滑滚动 Format document on Save 保存时自动格式化代码 Supercharger VS增强插件[破解教程] HideM ...

  2. Fetch-新一代Ajax API

    AJAX半遮半掩的底层API是饱受诟病的一件事情. XMLHttpRequest 并不是专为Ajax而设计的. 虽然各种框架对 XHR 的封装已经足够好用, 但我们可以做得更好. window.fet ...

  3. python基础===将json转换为dict的办法

    首先json是字符串. 大家都知道,字符串是用来传递信息的.json字符串实际上就是一种规定了格式的字符串, 通过这种格式,我们可以在不同的编程语言之间互相传递信息,比如我们可以把javascript ...

  4. xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance(xsi:schemaLocation详解)

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"中xsi的意思是 :本xml文件中要用到某些来自xsi代表的“http:/ ...

  5. Win10下Anaconda3安装CPU版本TensorFlow并使用Pycharm开发

    环境:windows10 软件:Anaconda3 1.安装Anaconda 选择相应的Anaconda进行安装,下载地址点击这里,下载对应系统版本的Anaconda3. 运行 开始菜单->An ...

  6. 深入浅出Node.js(一) - 初识Node.js

    1.Node.js将Javascript解决不确定性所使用的事件驱动方式引入了进来,因为JS是一门事件驱动的语言,旨在能够对外界的事件作出响应; 2.Node.js中,所有的有关异步的操作,都在同步操 ...

  7. 12-6 NSArray

    原文:http://rypress.com/tutorials/objective-c/data-types/nsarray NSArray NSArray 是 Objective-C中最常用的数组类 ...

  8. python 用abc模块构建抽象基类Abstract Base Classes

    见代码: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/08/01 16:58 from abc import ABCMet ...

  9. memcached安装+绑定访问ip

    安装: 1.由于memcached是基于libevent的,需要安装libevent,libevent-devel $yum -y install libevent libevent-devel 2. ...

  10. java入门概念梳理总结

    Java入门学习 简介 public class HelloWorld { public static void main(String []args) { System.out.println(&q ...