对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。

所以,n以内的反质数即为不超过n的约数个数最多的数。
怎样计算约数个数?
约数个数定理:
对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,
则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .
其中a1、a2、a3…ak是p1、p2、p3,…pk的指数。
 
所以,只需枚举一个数的所有质因数就行。
 
最多用到的 不同的 质因数 有多少呢?
 
∵2*3*5*7*11*13*17*19*23*29>2000000000
 
∴最多只用用到这么多不同的质因数。
 
搜索即可。
 
加两个剪枝:
①从小到大枚举质因数,不要让 顺序不同的 算作不同的方案。
 
②小的因数的指数必然大于大的因数的指数,
∵<1>约数个数相同时,小的数更优。
<2>大的数与小的数有相同的因数个数时,根据定义,大的数压根不是反质数了。
Code:
 #include<cstdio>
#include<iostream>
using namespace std;
const int prime[]={,,,,,,,,,,};
int n,Time[],sum;
long long ans;
int Calc()
{
int res=;
for(int i=;i<=;i++)
res*=(Time[i]+);
return res;
}
void dfs(long long now,int last)
{
if(now>n)
return;
int tmp=Calc();
if(sum<tmp||(sum==tmp&&now<ans)){sum=tmp;ans=now;}
for(int i=;i<=;i++)
if(Time[i]<Time[i-]&&i>=last)
{
Time[i]++;
dfs(now*prime[i],i);
Time[i]--;
}
}
int main()
{
scanf("%d",&n);
Time[]=;
dfs(,);
cout<<ans<<endl;
return ;
}

【搜索】【约数个数定理】[HAOI2007]反素数ant的更多相关文章

  1. bzoj 1053: [HAOI2007]反素数ant 搜索

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Sta ...

  2. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  3. [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1907  Solved: 1069[Submit][St ...

  4. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  5. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  6. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

  7. 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3480  Solved: 2036[Submit][St ...

  8. 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)

    1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...

  9. 【BZOJ1053】[HAOI2007]反素数ant 暴力

    [BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...

  10. BZOJ(8) 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4118  Solved: 2453[Submit][St ...

随机推荐

  1. spring boot 注解说明

    Starters 可以创建自己的Starter,但名字格式不能是 spring-boot-starter-*,而是 *-spring-boot-starter.类似Maven插件的规则.   自动配置 ...

  2. perl6中的hash定义(1)

    ,,,); say %hash; , b => ); say %hash2; my %hash3 = (:name('root'), :host('localost')); say %hash3 ...

  3. 利用keepalive+mysql replication 实现数据库的高可用

    利用keepalive+mysql replication 实现数据库的高可用 http://www.xuchanggang.cn/archives/866.html

  4. web.py输出中文字符串乱码问题的解决

    web.py中文字符串网页显示乱码的解决 #!/usr/bin/env python # encoding: utf-8 import weburls = ( '/', 'index')class i ...

  5. mysql 1366的错误 字符集错误解决方案

    最近用mysqlalchmy的时候遇到了 sqlalchemy.exc.InternalError: (pymysql.err.InternalError) (1366, "Incorrec ...

  6. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6150 Vertex Cover 二分图,构造

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6150 题意:"最小点覆盖集"是个NP完全问题 有一个近似算法是说—每次选取度数最大 ...

  7. An In-Depth Look at the HBase Architecture

    https://www.mapr.com/blog/in-depth-look-hbase-architecture An In-Depth Look at the HBase Architectur ...

  8. 在 static table view 中增加date picker 并进行动态高度设定

    http://blog.apoorvmote.com/how-to-pop-up-datepicker-inside-static-cells/

  9. PHP在变量前面加&是什么意思

    比如: <? php $a = 'c' ; $b = & $a ; //表示$b 和 $a 引用了同一个变量 $a = 'abc' ; //这里重置了$a echo $b ; //将输出 ...

  10. iframe自适应高度的方法

    不带边框的iframe因为能和网页无缝的结合从而不刷新新页面的情况下实现更新页面部分的数据成为可能,可是iframe却不像层那样可以收缩自如,iframe高度需要动态的调整需要JS来配合使用,只能通过 ...