【搜索】【约数个数定理】[HAOI2007]反素数ant
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。
对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,
则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .
其中a1、a2、a3…ak是p1、p2、p3,…pk的指数。
#include<cstdio>
#include<iostream>
using namespace std;
const int prime[]={,,,,,,,,,,};
int n,Time[],sum;
long long ans;
int Calc()
{
int res=;
for(int i=;i<=;i++)
res*=(Time[i]+);
return res;
}
void dfs(long long now,int last)
{
if(now>n)
return;
int tmp=Calc();
if(sum<tmp||(sum==tmp&&now<ans)){sum=tmp;ans=now;}
for(int i=;i<=;i++)
if(Time[i]<Time[i-]&&i>=last)
{
Time[i]++;
dfs(now*prime[i],i);
Time[i]--;
}
}
int main()
{
scanf("%d",&n);
Time[]=;
dfs(,);
cout<<ans<<endl;
return ;
}
【搜索】【约数个数定理】[HAOI2007]反素数ant的更多相关文章
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1907 Solved: 1069[Submit][St ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
- 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3480 Solved: 2036[Submit][St ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
- 【BZOJ1053】[HAOI2007]反素数ant 暴力
[BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...
- BZOJ(8) 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4118 Solved: 2453[Submit][St ...
随机推荐
- VS推荐插件
以下插件均可在NuGet下载 Smooth Scroll 平滑滚动 Format document on Save 保存时自动格式化代码 Supercharger VS增强插件[破解教程] HideM ...
- Fetch-新一代Ajax API
AJAX半遮半掩的底层API是饱受诟病的一件事情. XMLHttpRequest 并不是专为Ajax而设计的. 虽然各种框架对 XHR 的封装已经足够好用, 但我们可以做得更好. window.fet ...
- python基础===将json转换为dict的办法
首先json是字符串. 大家都知道,字符串是用来传递信息的.json字符串实际上就是一种规定了格式的字符串, 通过这种格式,我们可以在不同的编程语言之间互相传递信息,比如我们可以把javascript ...
- xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance(xsi:schemaLocation详解)
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"中xsi的意思是 :本xml文件中要用到某些来自xsi代表的“http:/ ...
- Win10下Anaconda3安装CPU版本TensorFlow并使用Pycharm开发
环境:windows10 软件:Anaconda3 1.安装Anaconda 选择相应的Anaconda进行安装,下载地址点击这里,下载对应系统版本的Anaconda3. 运行 开始菜单->An ...
- 深入浅出Node.js(一) - 初识Node.js
1.Node.js将Javascript解决不确定性所使用的事件驱动方式引入了进来,因为JS是一门事件驱动的语言,旨在能够对外界的事件作出响应; 2.Node.js中,所有的有关异步的操作,都在同步操 ...
- 12-6 NSArray
原文:http://rypress.com/tutorials/objective-c/data-types/nsarray NSArray NSArray 是 Objective-C中最常用的数组类 ...
- python 用abc模块构建抽象基类Abstract Base Classes
见代码: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/08/01 16:58 from abc import ABCMet ...
- memcached安装+绑定访问ip
安装: 1.由于memcached是基于libevent的,需要安装libevent,libevent-devel $yum -y install libevent libevent-devel 2. ...
- java入门概念梳理总结
Java入门学习 简介 public class HelloWorld { public static void main(String []args) { System.out.println(&q ...