[BalkanOI2016]Lefkaritika
题目大意:
一个n*m的格子上有b个障碍物,现在让你往上面放正方形(长宽在格线上)。问可以放多少种边长、位置不同的正方形?
思路:
很容易想到一个O(n^3)的暴力:
首先前缀和,然后枚举某一个顶点和正方形的边长,判断一下正方形里面是否为空,如果空,则为一种满足条件的答案。
枚举边长可以改成二分,这样复杂度是O(n^2 log n)的。
再考虑一个O(n^2)的动规:
用f[i][j]保存以(i,j)为右下角顶点的正方形的个数,显然,如果(i-1,j)(i,j-1)(i-1,j-1)(i,j)上都没有障碍,那么f[i][j]=min(f[i-1][j],f[i][j-1],f[i-1][j-1])+1。
正解是一个O(nb)的奇怪做法:
首先对于障碍物按列再按行排序。
枚举每一行,将在这一行上面的障碍物加入一个数组中。
考虑下边界在当前行的极大化正方形,无非有以下两种情况:
1.上边被顶到。
2.左右两边被顶到。
现在我们让每个障碍物“代表”被其约束的点,记录下行数比它大的左端点和右端点,这一过程可以用单调栈来求。
最后分情况计算出符合条件的正方形个数即可。
#include<stack>
#include<vector>
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int B=;
struct Point {
int x,y;
bool operator < (const Point &another) const {
if(y==another.y) return x>another.x;
return y<another.y;
}
};
std::vector<Point> a,p;
std::stack<int> q;
int l[B],r[B];
inline int calc(const int &x,const int &y) {
if(!x) return ;
return (int64)(y*-std::min(x,y))*(std::min(x,y)-)/;
}
int main() {
int n=getint(),m=getint(),b=getint();
for(register int i=;i<=b;i++) {
const int x=getint(),y=getint();
a.push_back((Point){x,y});
}
std::sort(a.begin(),a.end());
int64 ans=;
for(register int i=;i<=n;i++) {
p.clear();
p.push_back((Point){i,});
for(register unsigned j=;j<a.size();j++) {
if(a[j].x<=i) {
p.push_back(a[j]);
}
}
p.push_back((Point){i,m+});
while(!q.empty()) q.pop();
q.push();
for(register unsigned i=;i<p.size();i++) {
while(q.size()>&&p[q.top()].x<=p[i].x) q.pop();
l[i]=q.top();
q.push(i);
}
while(!q.empty()) q.pop();
q.push(p.size()-);
for(register unsigned i=p.size()-;i>;i--) {
while(q.size()>&&p[q.top()].x<p[i].x) q.pop();
r[i]=q.top();
q.push(i);
}
for(register unsigned j=;j<p.size();j++) {
ans+=calc(i,p[j].y-p[j-].y-);
}
for(register unsigned j=;j<p.size()-;j++) {
ans+=calc(i-p[j].x,p[r[j]].y-p[l[j]].y-)-calc(i-p[j].x,p[r[j]].y-p[j].y-)-calc(i-p[j].x,p[j].y-p[l[j]].y-);
}
}
printf("%lld\n",ans);
return ;
}
[BalkanOI2016]Lefkaritika的更多相关文章
- 『HGOI 20190917』Lefkaritika 题解 (DP)
题目概述 一个$n \times m$的整点集.其中$q$个点被m被设置为不能访问. 问这个点集中含有多少个不同的正方形,满足不包含任何一个不能访问的点. 对于$50\%$的数据满足$1 \leq n ...
- [BalkanOI2016]Cruise
题目大意: 平面直角坐标系内有n个点,每个点有一个点权. 你从原点p出发,走若干个点然后回到原点. 两个点之间只能笔直走,你的收获为你的路径围起来的区域内的所有店权和除以路径长度. 问最大收益. 思路 ...
随机推荐
- jq_从右向右的滑入滑出效果
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- hdu 3790 最短路径问题(双重权值,dijkstra算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费 ...
- quartz的简介
1. 介绍 Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源的任务调度框架,是完全由java开发的一个开源的任务日程管理系统,“任务进度管理器”就是一个在预 ...
- AJAX 核心 —— XMLHTTPRequest 对象回顾
一.AJAX概述 不使用 AJAX 的网页,如果要更新内容,需要重载整个页面. AJAX ( Asynchronous Javascript And XML ,异步 Javascript 和 XML) ...
- 自动化测试===Httprunner测试框架介绍
项目地址: https://github.com/HttpRunner/HttpRunner 中文手册: http://cn.httprunner.org/ 首先是环境搭建: pip install ...
- 【NOIP2016】补题
今天突然想到自己居然还没把NOIP2016补完 简直是傻逼... 所以开始写 D1T1:模拟 D1T2:NOIP最难的一道题,首先求LCA 离线下,把观察员单独提出来 然后可以维护一个类似桶排序的东西 ...
- RabbitMQ 实践及使用
目录 - 1. RabbitMQ的安装 - 1.1 配置好 epel - 1.2 安装 RPM包 - 1.3 创建用户设置权限- 2. RabbitMQ组件- 3. RabbitMQ ...
- OpenCV利用矩阵实现图像旋转
利用OpenCV的矩阵操作实现图像的逆时针旋转90度操作 代码 Mat src = imread("C:\\Users\\fenggl\\Desktop\\测试.jpg",MREA ...
- leetcode 之Linked List Cycle(24)
两个思路,一是用哈希表记录每个结点是还被访问过:二是定义两个快.慢指针,如果存在环的话,两个指针必定会在某位结点相遇. bool linkListNode(ListNode *head) { List ...
- Linux安全之密钥登录
我们一般使用 PuTTY 等 SSH 客户端来远程管理 Linux 服务器.但是,一般的密码方式登录,容易有密码被暴力破解的问题.所以,一般我们会将 SSH 的端口设置为默认的 22 以外的端口,或者 ...