[BalkanOI2016]Lefkaritika
题目大意:
一个n*m的格子上有b个障碍物,现在让你往上面放正方形(长宽在格线上)。问可以放多少种边长、位置不同的正方形?
思路:
很容易想到一个O(n^3)的暴力:
首先前缀和,然后枚举某一个顶点和正方形的边长,判断一下正方形里面是否为空,如果空,则为一种满足条件的答案。
枚举边长可以改成二分,这样复杂度是O(n^2 log n)的。
再考虑一个O(n^2)的动规:
用f[i][j]保存以(i,j)为右下角顶点的正方形的个数,显然,如果(i-1,j)(i,j-1)(i-1,j-1)(i,j)上都没有障碍,那么f[i][j]=min(f[i-1][j],f[i][j-1],f[i-1][j-1])+1。
正解是一个O(nb)的奇怪做法:
首先对于障碍物按列再按行排序。
枚举每一行,将在这一行上面的障碍物加入一个数组中。
考虑下边界在当前行的极大化正方形,无非有以下两种情况:
1.上边被顶到。
2.左右两边被顶到。
现在我们让每个障碍物“代表”被其约束的点,记录下行数比它大的左端点和右端点,这一过程可以用单调栈来求。
最后分情况计算出符合条件的正方形个数即可。
#include<stack>
#include<vector>
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int B=;
struct Point {
int x,y;
bool operator < (const Point &another) const {
if(y==another.y) return x>another.x;
return y<another.y;
}
};
std::vector<Point> a,p;
std::stack<int> q;
int l[B],r[B];
inline int calc(const int &x,const int &y) {
if(!x) return ;
return (int64)(y*-std::min(x,y))*(std::min(x,y)-)/;
}
int main() {
int n=getint(),m=getint(),b=getint();
for(register int i=;i<=b;i++) {
const int x=getint(),y=getint();
a.push_back((Point){x,y});
}
std::sort(a.begin(),a.end());
int64 ans=;
for(register int i=;i<=n;i++) {
p.clear();
p.push_back((Point){i,});
for(register unsigned j=;j<a.size();j++) {
if(a[j].x<=i) {
p.push_back(a[j]);
}
}
p.push_back((Point){i,m+});
while(!q.empty()) q.pop();
q.push();
for(register unsigned i=;i<p.size();i++) {
while(q.size()>&&p[q.top()].x<=p[i].x) q.pop();
l[i]=q.top();
q.push(i);
}
while(!q.empty()) q.pop();
q.push(p.size()-);
for(register unsigned i=p.size()-;i>;i--) {
while(q.size()>&&p[q.top()].x<p[i].x) q.pop();
r[i]=q.top();
q.push(i);
}
for(register unsigned j=;j<p.size();j++) {
ans+=calc(i,p[j].y-p[j-].y-);
}
for(register unsigned j=;j<p.size()-;j++) {
ans+=calc(i-p[j].x,p[r[j]].y-p[l[j]].y-)-calc(i-p[j].x,p[r[j]].y-p[j].y-)-calc(i-p[j].x,p[j].y-p[l[j]].y-);
}
}
printf("%lld\n",ans);
return ;
}
[BalkanOI2016]Lefkaritika的更多相关文章
- 『HGOI 20190917』Lefkaritika 题解 (DP)
题目概述 一个$n \times m$的整点集.其中$q$个点被m被设置为不能访问. 问这个点集中含有多少个不同的正方形,满足不包含任何一个不能访问的点. 对于$50\%$的数据满足$1 \leq n ...
- [BalkanOI2016]Cruise
题目大意: 平面直角坐标系内有n个点,每个点有一个点权. 你从原点p出发,走若干个点然后回到原点. 两个点之间只能笔直走,你的收获为你的路径围起来的区域内的所有店权和除以路径长度. 问最大收益. 思路 ...
随机推荐
- 函数getopt()及其参数optind -- (转)
getopt被用来解析命令行选项参数 #include <unistd.h> extern char *optarg; //选项的参数指针 extern int ...
- hdu 1003 Max Sum (DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others) ...
- perl 在win下输出中文乱码问题
use utf8; my $name = '你好'; binmode(STDOUT, ":encoding(gbk)"); print $name,"\n"; ...
- 64_a2
arquillian-core-parent-1.1.11-6.fc26.noarch.rpm 10-Feb-2017 13:22 12918 arquillian-core-spi-1.1.11-6 ...
- 2014ACM/ICPC亚洲区北京站题解
本题解不包括个人觉得太水的题(J题本人偷懒没做). 个人觉得这场其实HDU-5116要比HDU-5118难,不过赛场情况似乎不是这样.怀疑是因为老司机带错了路. 这套题,个人感觉动态规划和数论是两个主 ...
- [会装]Spark standalone 模式的安装
1. 简介 以standalone模式安装spark集群bin运行demo. 2.环境和介质准备 2.1 下载spark介质,根据现有hadoop的版本选择下载,我目前的环境中的hadoop版本是2. ...
- java之基本数据类型与引用数据类型
基本数据类型 需要注意的是字符是基本数据类型,但是字符串不是基本数据类型. 引用数据类型 类.接口类型.数组类型.枚举类型.注解类型. (上面说的字符串String属于引用数据类型中“类”的范畴) 两 ...
- 共享变量 static
一个类,有static变量counter,所有类实例共享 如果多个类实例,通过多线程访问static变量,就会产生覆盖的情况. 会发现counter偏小. 解决方法: AtomicLong count ...
- poj 3280(区间DP)
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7869 Accepted: 38 ...
- 安卓屏幕旋转时,禁止Activity重新加载
安卓设备旋转屏幕时,Activity默认会重新加载,如果是要读取大量数据的场景,那等待的时间比较长,这一点不可接受,所以要想办法禁止Activity自动重新加载. 方法如下在AndroidManife ...