G. Yash And Trees

题目连接:

http://www.codeforces.com/contest/633/problem/G

Description

Yash loves playing with trees and gets especially excited when they have something to do with prime numbers. On his 20th birthday he was granted with a rooted tree of n nodes to answer queries on. Hearing of prime numbers on trees, Yash gets too intoxicated with excitement and asks you to help out and answer queries on trees for him. Tree is rooted at node 1. Each node i has some value ai associated with it. Also, integer m is given.

There are queries of two types:

for given node v and integer value x, increase all ai in the subtree of node v by value x

for given node v, find the number of prime numbers p less than m, for which there exists a node u in the subtree of v and a non-negative integer value k, such that au = p + m·k.

Input

The first of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 1000) — the number of nodes in the tree and value m from the problem statement, respectively.

The second line consists of n integers ai (0 ≤ ai ≤ 109) — initial values of the nodes.

Then follow n - 1 lines that describe the tree. Each of them contains two integers ui and vi (1 ≤ ui, vi ≤ n) — indices of nodes connected by the i-th edge.

Next line contains a single integer q (1 ≤ q ≤ 100 000) — the number of queries to proceed.

Each of the last q lines is either 1 v x or 2 v (1 ≤ v ≤ n, 0 ≤ x ≤ 109), giving the query of the first or the second type, respectively. It's guaranteed that there will be at least one query of the second type.

Output

For each of the queries of the second type print the number of suitable prime numbers.

Sample Input

8 20

3 7 9 8 4 11 7 3

1 2

1 3

3 4

4 5

4 6

4 7

5 8

4

2 1

1 1 1

2 5

2 4

Sample Output

3

1

1

Hint

题意

给你一棵树,然后给你n,m

每个点有一个点权

有两个操作

1 x v 使得x子树里面的所有点的权值加v

2 x 查询x的子树里面有多少个点的权值满足p+k*m,其中p是小于m的素数

题解:

就直接dfs序跑一发就好了

我们用bitset维护每一个点他下面出现过哪些数

更新操作,就直接让这个bitset循环移动就好了,注意循环移动可以拆成两个步骤,一个向右边移动(x%m),一个向左边移动(m-x),然后两个并起来就好了

查询操作,就最后得到那个区间的bitset和素数表&一下就好了

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 200005;
const int MAXN = 1005;
typedef bitset<MAXN> SgTreeDataType;
vector<int> E[maxn];
bitset<MAXN>pri;
int st[maxn],ed[maxn],tot=0,n,m,v[1020],a[maxn],c[maxn];
struct treenode
{
int L , R ;
SgTreeDataType sum;
int lazy;
void update(int x)
{
lazy=(lazy+x)%m;
sum=(sum<<x)|(sum>>(m-x));
}
}; treenode tree[maxn*4]; inline void push_down(int o)
{
int lazyval = tree[o].lazy;
if(lazyval)
{
tree[2*o].update(lazyval) ; tree[2*o+1].update(lazyval);
tree[o].lazy = 0;
}
} inline void push_up(int o)
{
tree[o].sum = tree[2*o].sum | tree[2*o+1].sum;
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum.reset(), tree[o].lazy = 0;
if (L == R)
{
tree[o].sum[c[L]]=1;
return;
}
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
push_up(o);
}
} inline void update(int QL,int QR,int v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].update(v);
else
{
push_down(o);
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
} inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>1;
SgTreeDataType res;
res.reset();
if (QL <= mid) res |= query(QL,QR,2*o);
if (QR > mid) res |= query(QL,QR,2*o+1);
push_up(o);
return res;
}
} void dfs(int x,int fa)
{
st[x]=++tot;
c[tot]=a[x];
for(int i=0;i<E[x].size();i++)
{
if(E[x][i]==fa)continue;
dfs(E[x][i],x);
}
ed[x]=tot;
}
void get_pri()
{
for(int i=2;i<m;i++)
{
if(v[i])continue;
pri[i]=1;
for(int j=i;j<m;j+=i)
v[j]=1;
}
}
int main()
{
scanf("%d%d",&n,&m);
get_pri();
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),a[i]%=m;
for(int i=1;i<n;i++)
{
int x,y;scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
dfs(1,-1);
build_tree(1,n,1);
int q;scanf("%d",&q);
while(q--)
{
int op;scanf("%d",&op);
if(op==1)
{
int x,y;
scanf("%d%d",&x,&y);
update(st[x],ed[x],y%m,1);
}
else
{
int x;scanf("%d",&x);
bitset<MAXN> ans=query(st[x],ed[x],1);
printf("%d\n",(ans&pri).count());
}
}
return 0;
}

Manthan, Codefest 16 G. Yash And Trees dfs序+线段树+bitset的更多相关文章

  1. codeforces 633G. Yash And Trees dfs序+线段树+bitset

    题目链接 G. Yash And Trees time limit per test 4 seconds memory limit per test 512 megabytes input stand ...

  2. CF Manthan, Codefest 16 G. Yash And Trees 线段树+bitset

    题目链接:http://codeforces.com/problemset/problem/633/G 大意是一棵树两种操作,第一种是某一节点子树所有值+v,第二种问子树中节点模m出现了多少种m以内的 ...

  3. Codeforces633G(SummerTrainingDay06-I dfs序+线段树+bitset)

    G. Yash And Trees time limit per test:4 seconds memory limit per test:512 megabytes input:standard i ...

  4. Codeforces Round #169 (Div. 2) E. Little Girl and Problem on Trees dfs序+线段树

    E. Little Girl and Problem on Trees time limit per test 2 seconds memory limit per test 256 megabyte ...

  5. DFS序+线段树+bitset CF 620E New Year Tree(圣诞树)

    题目链接 题意: 一棵以1为根的树,树上每个节点有颜色标记(<=60),有两种操作: 1. 可以把某个节点的子树的节点(包括本身)都改成某种颜色 2. 查询某个节点的子树上(包括本身)有多少个不 ...

  6. codeforces 620E. New Year Tree dfs序+线段树+bitset

    题目链接 给一棵树, 每个节点有颜色, 两种操作, 一种是将一个节点的子树全都染色成c, 一种是查询一个节点的子树有多少个不同的颜色, c<=60. 每个节点一个bitset维护就可以. #in ...

  7. POJ 3321 DFS序+线段树

    单点修改树中某个节点,查询子树的性质.DFS序 子树序列一定在父节点的DFS序列之内,所以可以用线段树维护. 1: /* 2: DFS序 +线段树 3: */ 4:   5: #include < ...

  8. 【XSY2667】摧毁图状树 贪心 堆 DFS序 线段树

    题目大意 给你一棵有根树,有\(n\)个点.还有一个参数\(k\).你每次要删除一条长度为\(k\)(\(k\)个点)的祖先-后代链,问你最少几次删完.现在有\(q\)个询问,每次给你一个\(k\), ...

  9. BZOJ1103 [POI2007]大都市meg dfs序 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1103 题意概括 一棵树上,一开始所有的边权值为1,我们要支持两种操作: 1. 修改某一条边的权值为 ...

随机推荐

  1. MFC不同工程(解决方案)之间对话框资源的复制与重用方法(转)

    原文转自 https://blog.csdn.net/lihui126/article/details/45556687

  2. [Leetcode Week12]Unique Paths

    Unique Paths 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths/description/ Description A ...

  3. monkey测试===easyMonkey测试【推荐】

    easymonkey测试: easymonkey是基于monkey测试的一个二次开发工具.(关于monkey测试参见之前blog) easymonkey的特点就是方便,解决了很多参数命令上设置的麻烦, ...

  4. 2017多校第7场 HDU 6127 Hard challenge 极角排序,双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6127 题意:平面直角坐标系上有n个整点,第i个点有一个点权val​,坐标为(xi,yi),其中不存在任 ...

  5. 实验室项目.md

    1 嵌入式操作系统 为什么要用嵌入式操作系统 普通的单片机编程:程序(软件)--单片机硬件: 嵌入式操作系统开发:程序(软件)--操作系统--嵌入式硬件(包括单片机等); 我们平时普通所学的单片机编程 ...

  6. Unsupported gpu architecture 'compute_20'

    NVCC src/caffe/layers/reduction_layer.cunvcc fatal   : Unsupported gpu architecture 'compute_20'Make ...

  7. Java初次见面

    1.Java语言特点(运行环境JRE[操作系统,api,dll]): a.跨平台:Java自带的虚拟机很好地实现了跨平台性.Java源程序代码经过编译后生成二进制的字节码是与平台无关的,但是可被Jav ...

  8. vue页面高度填充,不出现滚动条

    现在的需求是这样:vue单页工程化开发,上面有一个header,左边有一个侧边栏,右边内容展示.要求左边侧边栏的高度,要填充满整个页面(除了header外,header:height:60px)--如 ...

  9. LinkedList 源码分析

    LinkedList :双向链表结构, 内部存在frist节点 和 last节点.通过改变 首节点和 尾节点的引用来实现新增和修改 有一个内部类: //节点类,内部包括前节点和后节点,和数据项 // ...

  10. 属性名、变量名与 内部关键字 重名 加&

    procedure TForm4.btn3Click(Sender: TObject); var MyQj: TQJson; MyPrinter: TPrinter; begin MyQj := TQ ...