欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld

技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。

神经网络,或者深度学习算法的参数初始化是一个很重要的方面,传统的初始化方法从高斯分布中随机初始化参数。甚至直接全初始化为1或者0。这样的方法暴力直接,但是往往效果一般。本篇文章的叙述来源于一个国外的讨论帖子[1],下面就自己的理解阐述一下。

首先我们来思考一下,为什么在神经网络算法(为了简化问题,我们以最基本的DNN来思考)中,参数的选择很重要呢?以sigmoid函数(logistic neurons)为例,当x的绝对值变大时,函数值越来越平滑,趋于饱和,这个时候函数的倒数趋于0,例如,在x=2时,函数的导数约为1/10,而在x=10时,函数的导数已经变成约为1/22000,也就是说,激活函数的输入是10的时候比2的时候神经网络的学习速率要慢2200倍!

为了让神经网络学习得快一些,我们希望激活函数sigmoid的导数较大。从数值上,大约让sigmoid的输入在[-4,4]之间即可,见上图。当然,也不一定要那么精确。我们知道,一个神经元j的输入是由前一层神经元的输出的加权和,xj=∑iai⋅wi+bj。因此,我们可以通过控制权重参数初始值的范围,使得神经元的输入落在我们需要的范围内。

一种比较简单、有效的方法是:权重参数初始化从区间均匀随机取值。

(−1d√,1d√),其中d是一个神经元的输入数量。

为了说明这样取值的合理性,先简单回顾一下几点基本知识:

1.符合均匀分布U(a,b)的随机变量数学期望和方差分别是——数学期望:E(X)=(a+b)/2,方差:D(X)=(b-a)²/12

2.如果随机变量X,Y是相互独立的,那么Var(X+Y) = Var(X)+Var(Y),如果X,Y是相互独立的且均值为0,那么Var(X*Y) = Var(X)*Var(Y)

因此,如果我们限制神经元的输入信号(xi)是均值=0,标准差=1的,那么

Var(wi)=(2d√)2/12=13d
Var(∑i=1dwixi)=d∗Var(wi)=13

也就是说,随机的d个输入信号加权和,其中权重来自于(−1d√,1d√)均匀分布,服从均值=0,方差=1/3的正态分布,且与d无关。所以神经元的输入落在区间[-4,4]之外的概率非常小。


更一般的形式可以写为:

∑i=0d<wixi>=∑i=0d<wi><xi>=0
⟨(∑i=0dwixi)(∑i=0dwixi)⟩=∑i=0d<w2i><x2i>=σ2d

另外一种较新的初始值方法

根据Glorot & Bengio (2010) [4], initialize the weights uniformly within the interval [−b,b], where

b=6Hk+Hk+1−−−−−−−−−√,

Hk and Hk+1 are the sizes of the layers before and after the weight matrix, for sigmoid units. Or hyperbolic tangent units: sample a Uniform [−b,b] with

b=46Hk+Hk+1−−−−−−−−−√,

其他场景的初始值方法[2]

  • in the case of RBMs, a zero-mean Gaussian with a small standard deviation around 0.1 or 0.01 works well (Hinton, 2010) to initialize the weights.

  • Orthogonal random matrix initialization, i.e. W = np.random.randn(ndim, ndim); u, s, v = np.linalg.svd(W) then use u as your initialization matrix.


参考资料

[1] http://stats.stackexchange.com/questions/47590/what-are-good-initial-weights-in-a-neural-network

[2] Bengio, Yoshua. “Practical recommendations for gradient-based training of deep architectures.” Neural Networks: Tricks of the Trade. Springer Berlin Heidelberg, 2012. 437-478.

[3] LeCun, Y., Bottou, L., Orr, G. B., and Muller, K. (1998a). Efficient backprop. In Neural Networks, Tricks of the Trade.

[4] Glorot, Xavier, and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural networks.” International conference on artificial intelligence and statistics. 2010.

深度学习方法(六):神经网络weight参数怎么初始化的更多相关文章

  1. 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...

  2. 深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 上一篇讲了深度学习方法(十) ...

  3. 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks

    上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...

  4. AI从业者需要应用的10种深度学习方法

    https://zhuanlan.zhihu.com/p/43636528 https://zhuanlan.zhihu.com/p/43734896 摘要:想要了解人工智能,不知道这十种深度学习方法 ...

  5. PyTorch学习系列(九)——参数_初始化

    from:http://blog.csdn.net/VictoriaW/article/details/72872036 之前我学习了神经网络中权值初始化的方法 那么如何在pytorch里实现呢. P ...

  6. SLAM会被深度学习方法取代吗?

    日益感觉到自己对深度学习的理解比较肤浅,这段且当做是以前的认识. 上上周去围观了泡泡机器人和AR酱联合举办的论坛.在圆桌阶段,章国峰老师提了一个问题:SLAM会被深度学习方法取代吗?这是一个很有趣的话 ...

  7. 深度学习方法(九):自然语言处理中的Attention Model注意力模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.NET/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 上一篇博文深度学习方法(八):Enc ...

  8. libevent源码深度剖析六

    libevent源码深度剖析六 ——初见事件处理框架 张亮 前面已经对libevent的事件处理框架和event结构体做了描述,现在是时候剖析libevent对事件的详细处理流程了,本节将分析 lib ...

  9. Torch 网络层 参数的初始化问题

    Torch 网络层 参数的初始化问题 参考链接: https://github.com/Kaixhin/nninit 从 Torch 中自带的包,可以看到:https://github.com/tor ...

随机推荐

  1. NOIP2016Day1T3换教室(floyd+期望dp)

    啊...这个时间写博客,明天还要上学,整个人都不好了... 这是我写的第一道期望题hiahiahia... 题目大意就不说了QWQ 80分儿做法:先floyd,爆搜枚举哪些点取,求出答案,效率O(C( ...

  2. NOIP系列(续)

    马上就要告别noip了呢. 这道题大家都说dfs可过. 但是数据范围一眼状压啊. 首先假设点是有序的(选取有先后顺序),其实这并不影响什么,但是却省下大量的时间和代码长度. 然后状压,dp[i]表示状 ...

  3. 四道JavaScript面试题检测你的js基本功

    下面有四道简短的JavaScript小脚本,如果你能顺利预测脚本的运行结果,那么你的JavaScript基本功还是可以的.如果答错了,可以相应地去补一下缺漏的知识.反正也很简单,答错了只是说明你没了解 ...

  4. UIViewContentMode的各种效果

    UIViewContentMode的各种效果:   首先它是枚举类型的数据,表示为下所示: typedef enum { UIViewContentModeScaleToFill,           ...

  5. Educational Codeforces Round 61 (Rated for Div. 2) D,F题解

    D. Stressful Training 题目链接:https://codeforces.com/contest/1132/problem/D 题意: 有n台电脑,每台电脑都有初始电量ai,也有一个 ...

  6. HDU3376 最小费用最大流 模板2

    Matrix Again Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)To ...

  7. crontab 定期拉取代码

    * * * * * cd /home/wwwroot/default/lion/ && /usr/bin/git pull origin 5hao >> /tmp/git. ...

  8. CMDB服务器管理系统【s5day88】:兼容的实现

    比较麻烦的实现方式 类的继承方式 目录结构如下: auto_client\bin\run.py import sys import os import importlib import request ...

  9. 【洛谷 P4008】 [NOI2003]文本编辑器 (Splay)

    题目链接 \(Splay\)先练到这吧(好像还有道毒瘤的维护数列诶,算了吧) 记录下光标的编号,维护就是\(Splay\)基操了. 另外数据有坑,数据是\(Windows\)下生成了,回车是'\n\r ...

  10. 首行缩进css

    html首行缩进2字符,可以使用CSS属性中的[text-indent]进行设置. 设置代码如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1 ...