NumPy来自现有数据的数组
NumPy - 来自现有数据的数组
这一章中,我们会讨论如何从现有数据创建数组。
numpy.asarray
此函数类似于numpy.array
,除了它有较少的参数。 这个例程对于将 Python 序列转换为ndarray
非常有用。
numpy.asarray(a, dtype = None, order = None)
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | a 任意形式的输入参数,比如列表、列表的元组、元组、元组的元组、元组的列表 |
2. | dtype 通常,输入数据的类型会应用到返回的ndarray |
3. | order 'C' 为按行的 C 风格数组,'F' 为按列的 Fortran 风格数组 |
下面的例子展示了如何使用asarray
函数:
示例 1
# 将列表转换为 ndarray
import numpy as np
x = [1,2,3]
a = np.asarray(x)
print a
输出如下:
[1 2 3]
示例 2
# 设置了 dtype
import numpy as np
x = [1,2,3]
a = np.asarray(x, dtype = float)
print a
输出如下:
[ 1. 2. 3.]
示例 3
# 来自元组的 ndarray
import numpy as np
x = (1,2,3)
a = np.asarray(x)
print a
输出如下:
[1 2 3]
示例 4
# 来自元组列表的 ndarray
import numpy as np
x = [(1,2,3),(4,5)]
a = np.asarray(x)
print a
输出如下:
[(1, 2, 3) (4, 5)]
numpy.frombuffer
此函数将缓冲区解释为一维数组。 暴露缓冲区接口的任何对象都用作参数来返回ndarray
。
numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | buffer 任何暴露缓冲区借口的对象 |
2. | dtype 返回数组的数据类型,默认为float |
3. | count 需要读取的数据数量,默认为-1 ,读取所有数据 |
4. | offset 需要读取的起始位置,默认为0 |
示例
下面的例子展示了frombuffer
函数的用法。
import numpy as np
s = 'Hello World'
a = np.frombuffer(s, dtype = 'S1')
print a
输出如下:
['H' 'e' 'l' 'l' 'o' ' ' 'W' 'o' 'r' 'l' 'd']
numpy.fromiter
此函数从任何可迭代对象构建一个ndarray
对象,返回一个新的一维数组。
numpy.fromiter(iterable, dtype, count = -1)
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | iterable 任何可迭代对象 |
2. | dtype 返回数组的数据类型 |
3. | count 需要读取的数据数量,默认为-1 ,读取所有数据 |
以下示例展示了如何使用内置的range()
函数返回列表对象。 此列表的迭代器用于形成ndarray
对象。
示例 1
# 使用 range 函数创建列表对象
import numpy as np
list = range(5)
print list
输出如下:
[0, 1, 2, 3, 4]
示例 2
# 从列表中获得迭代器
import numpy as np
list = range(5)
it = iter(list)
# 使用迭代器创建 ndarray
x = np.fromiter(it, dtype = float)
print x
输出如下:
[0. 1. 2. 3. 4.]
NumPy来自现有数据的数组的更多相关文章
- numpy 基于现有数据创建ndarray(from existing data)
1 numpy.array array(object[, dtype=None, copy=True, order='K', subok=False, ndmin=0]) 2 numpy.asarra ...
- NumPy来自数值范围的数组
NumPy - 来自数值范围的数组 这一章中,我们会学到如何从数值范围创建数组. numpy.arange 这个函数返回ndarray对象,包含给定范围内的等间隔值. numpy.arange(sta ...
- NumPy 基于已有数据创建数组
原文:Python Numpy 教程 章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基 ...
- 一、Numpy库与多维数组
# Author:Zhang Yuan import numpy as np '''重点摘录: 轴的索引axis=i可以理解成是根据[]层数来判断的,0表示[],1表示[[]]... Numpy广播的 ...
- 用NumPy genfromtxt导入数据
用NumPy genfromtxt导入数据 NumPy provides several functions to create arrays from tabular data. We focus ...
- numpy之统计函数和布尔数组方法
统计函数 可以通过numpy的统计函数对整个数组或者某个轴向的数据进项统计计算. 所谓的轴向,其实就是n维向量的某一维.或者说某一行,某一列. sum对数组(向量)中全部或某个轴向的元素求和,长度为0 ...
- Numpy | 06 从已有的数组创建数组
numpy.asarray numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个. numpy.asarray(a ...
- NumPy 基于数值区间创建数组
来源:Python Numpy 教程 章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基 ...
- 手把手numpy教程【二】——数组与切片
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Numpy专题的第二篇,我们来进入正题,来看看Numpy的运算. 上一篇文章当中曾经提到过,同样大小的数据,使用Numpy的运算速度会 ...
随机推荐
- 160725、Java Map按键排序和按值排序
按键排序(sort by key) jdk内置的Java.util包下的TreeMap<K,V>既可满足此类需求,原理很简单,其重载的构造器之一 有一个参数,该参数接受一个比较器,比较器定 ...
- 巨蟒python全栈开发-第10天 函数进阶
一.今日主要内容总览(重点) 1.动态传参(重点) *,** *: 形参:聚合 位置参数*=>元组 关键字**=>字典 实参:打散 列表,字符串,元组=>* 字典=>** 形参 ...
- test-event-create
# 1 创建存储过程 /* delimiter // create procedure test() begin update test SET name = date_format(now(),'% ...
- Kafka — 高吞吐量的分布式发布订阅消息系统【转】
1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有哪两个条件 ...
- "零代码”开发B/S企业管理软件之二:怎么创建数据源
声明:该软件为本人原创作品,多年来一直在使用该软件做项目,软件本身也一直在改善,在增加新的功能.但一个人总是会有很多考虑不周全的地方,希望能找到做同类软件的同行一起探讨. 本人文笔不行,能把意思表达清 ...
- Python(数据库之约束表的关系)
一.约束 约束条件与数据类型的宽度一样,都是可选参数 作用:用于保证数据的完整性和一致性 主要分为: RIMARY KEY (PK) 标识该字段为该表的主键,可以唯一的标识记录 FOREIGN KEY ...
- eclipse导入项目,项目名出现红叉的情况(修改版)
转至:http://blog.csdn.net/niu_hao/article/details/17440247 今天用eclipse导入同事发给我的一个项目之后,项目名称上面出现红叉,但是其他地方都 ...
- 快速排序算法Java版
网上关于快速排序的算法原理和算法实现都比较多,不过java是实现并不多,而且部分实现很难理解,和思路有点不搭调.所以整理了这篇文章.如果有不妥之处还请建议.首先先复习一些基础. 1.算法概念. ...
- [笔记]使用Go语言Redigo包在Docker容器内连接Redis容器的方法
Docker容器之间的连接可以带来不少方便,下面记录下如何在自己容器内通过环境变量连接与之连接的Redis容器的方法. 先起一个Redis的Docker容器,命名为 redis,再起一个自己的Dock ...
- eclipse 安装 spring boot suite 插件遇到的问题
问题:安装失败,报如下错误: An error occurred while collecting items to be installedsession context was:(profile= ...