HDU 3572 Task Schedule(拆点+最大流dinic)
Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7753 Accepted Submission(s): 2381
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Print a blank line after each test case.
题目链接:HDU 3572
拆点的最大流判断是否满流的题目,点怎么拆呢?从源点S连向每一个任务i一条容量为p的边,说明每一个任务一开始要p个流量流入,然后每一个任务i向时间点[s,e]连一条容量为1的边,说明一个任务只能同时在一个时间点被工作,即不能同时既在时间点A上加工又在时间点B上加工,然后每一个时间点向T连一条容量为m个边,说明一个时间点只能最多同时有m个机器在工作。最后你就是要判断从S流出的$n*p$个流量能否全部流入T中就好了
空间复杂度大概是$(500+500^2+500)*2$条边,$500+500$个点,原本只会最辣鸡的FF想低空卡过这题,然而被无限TLE教做人,查查题解又膜膜dinic,发现dinic也容易理解,分层的意义就是减少没有用的搜索,因为增广一定是从最小距离距离近的到最小距离远的,那么那些d[v]!=d[u]+1的点就可以被忽略掉了
代码:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1010;
const int M=251000+7;
struct edge
{
int to,nxt;
int cap;
};
edge E[M<<1];
int head[N],tot,d[N]; void add(int s,int t,int cap)
{
E[tot].to=t;
E[tot].cap=cap;
E[tot].nxt=head[s];
head[s]=tot++; E[tot].to=s;
E[tot].cap=0;
E[tot].nxt=head[t];
head[t]=tot++;
}
void init()
{
CLR(head,-1);
tot=0;
}
int bfs(int s,int t)
{
CLR(d,-1);
d[s]=0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int now=Q.front();
Q.pop();
for (int i=head[now]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(d[v]==-1&&E[i].cap>0)
{
d[v]=d[now]+1;
if(v==t)
return 1;
Q.push(v);
}
}
}
return d[t]!=-1;
}
int dfs(int s,int t,int f)
{
if(s==t||!f)
return f;
int r=0;
for (int i=head[s]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(d[v]==d[s]+1&&E[i].cap)
{
int d=dfs(v,t,min(f,E[i].cap));
if(d>0)
{
E[i].cap-=d;
E[i^1].cap+=d;
r+=d;
f-=d;
if(!f)
break;
}
}
}
if(!r)
d[s]=INF;
return r;
}
int dinic(int s,int t)
{
int r=0;
while (bfs(s,t))
r+=dfs(s,t,INF);
return r;
}
int main(void)
{
int tcase,p,s,e,i,j,n,m;
scanf("%d",&tcase);
for (int q=1; q<=tcase; ++q)
{
init();
scanf("%d%d",&n,&m);
int S=0;
int tl=INF,tr=-INF;
int sump=0;
for (i=1; i<=n; ++i)
{
scanf("%d%d%d",&p,&s,&e);
add(S,i,p);
sump+=p; if(s<tl)
tl=s;
if(e>tr)
tr=e; for (j=s; j<=e; ++j)
add(i,n+j,1);
}
int T=n+tr+1;
for (i=tl; i<=tr; ++i)
add(n+i,T,m);
printf("Case %d: %s\n\n",q,dinic(S,T)==sump?"Yes":"No");
}
return 0;
}
HDU 3572 Task Schedule(拆点+最大流dinic)的更多相关文章
- 解题报告:hdu 3572 Task Schedule(当前弧优化Dinic算法)
Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...
- hdu 3572 Task Schedule (dinic算法)
pid=3572">Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 3572 Task Schedule (最大流)
C - Task Schedule Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- hdu 3572 Task Schedule(最大流&&建图经典&&dinic)
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 3572 Task Schedule
Task Schedule 题意:有N个任务,M台机器.每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间:问每一个任务是否能在预定的时间区间内完成: 注:每一个任 ...
- 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)
Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...
- hdu 3572 Task Schedule(最大流)2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC
题意: 告诉我们有m个任务和k个机器.第i个任务需要ci天完成,最早从第ai天开始,最晚在第bi天结束.每台机器每天可以执行一个任务.问,是否可以将所有的任务都按时完成? 输入: 首行输入一个整数t, ...
- HDU 3572 Task Schedule(最大流判断满流)
https://vjudge.net/problem/HDU-3572 题意: 有N个作业和M台机器,每个作业都有一个持续时间P,工作的日期为S~E.作业可以断断续续的在不同机器上做,每台机器每次只可 ...
- hdu 3572 Task Schedule【 最大流 】
求出最大流,再判断是否满流 先不理解为什么要这样建图 后来看了这一篇题解 http://blog.csdn.net/u012350533/article/details/12361003 把0看做源点 ...
随机推荐
- MySQL SQL Mode及相关问题
MySQL可以运行于不同的SQLMode下,Mode定义了MySQL应支持的SQL语法.数据校验等. 一.Mode会影响到日期类型.字符串类型等的插入操作.其中多种模式影响了对某些特殊字符如何理解的问 ...
- BZOJ4551——[Tjoi2016&Heoi2016]树
1.题意: 给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均无标记,而且对于某个 结点,可以打多次标记.)2. 询问操作:询问某个 ...
- 号外!GNOME 3.22 正式发布喽!!!
导读 经过半年的努力开发,别名为“卡尔斯鲁厄”的 GNOME 3.22 正式发布了!“GNOME Software 可以安装和更新 Flatpak 软件包,GNOME Builder 则可以创建它们, ...
- iOS界面跳转的一些优化方案
原文地址: http://blog.startry.com/2016/02/14/Think-Of-UIViewController-Switch/ iOS界面跳转的一些优化方案 App应用程序开发, ...
- HeapSort 堆排序 基于伪代码实现
此文原创, http://www.cnblogs.com/baokang/p/4735431.html ,禁止转载 GIF 动态图 伪代码 /* From Wikipedia, the free en ...
- git 教程(15)--分支管理策略
通常,合并分支时,如果可能,Git会用Fast forward模式,但这种模式下,删除分支后,会丢掉分支信息. 如果要强制禁用Fast forward模式,Git就会在merge时生成一个新的comm ...
- OOCSS的概念和思路
<概念> <思路> 面向对象的CSS有两个原则: 独立的结构和样式 独立的容器和内容 以下几点是创建OOCSS的关键部分: 创建一个组件库 独立的容器和内容,并且避免样式来依赖 ...
- MQTT(二)推送
MQTT V3.1----publish解读 - leeying - 博客园 http://www.cnblogs.com/leeying/p/3791341.html MQTT - 聂永的博客 - ...
- 51. N-Queens
题目: The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two que ...
- Java Web技术之JSP与EL表达式
1,jsp是用来干嘛的? JSP技术是用来解决在Servlet中需要书写大量的拼接html标签.以及框架的代码 2,jsp的三种脚本元素 a.JSP的脚本声明(定义) 格式: <%! 书写Jav ...