17082 两个有序数序列中找第k小
17082 两个有序数序列中找第k小
时间限制:1000MS 内存限制:65535K
提交次数:0 通过次数:0
题型: 编程题 语言: 无限制
Description
已知两个已经排好序(非减序)的序列X和Y,其中X的长度为m,Y长度为n,
现在请你用分治算法,找出X和Y的第k小的数,算法时间复杂度为O(max{logm, logn})。 此题请勿采用将序列X和Y合并找第k小的O(m+n)的一般方法,要充分利用X和Y已经排好序的这一特性。
输入格式
第一行有三个数,分别是长度m、长度n和k,中间空格相连(1<=m,n<=100000; 1<=k<=m+n)。
第二行m个数分别是非减序的序列X。第三行n个数分别是非减序的序列Y。
输出格式
序列X和Y的第k小的数。
输入样例
5 6 7
1 8 12 12 21
4 12 20 22 26 31
输出样例
20
提示
假设:X序列为X[xBeg...xEnd],而Y序列为Y[yBeg...yEnd]。 将序列X和Y都均分2段,即取X序列中间位置为xMid (xMid = xBeg+(xEnd-xBeg)/2),也同理取序列Y中间位置为yMid。
比较X[xMid]和Y[yMid]的大小,此时记录X左段和Y左段元素个数合计为halfLen,即halfLen = xMid-xBeg+yMid-yBeg+2。 1. 当X[xMid] < Y[yMid]时,在合并的数组中,原X[xBeg...xMid]所有元素一定在Y[yMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于Y[yMid]这个元素,故以后没有必要搜索 Y[yMid...yEnd]这些元素,可弃Y后半段数据。
此时只需递归的对X序列+Y序列的前半段,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于X[xMid]这个元素,故以后没有必要搜索 X[xBeg...xMid]这些元素,可弃X前半段数据。
此时只需递归的对X序列的后半段+Y序列,去搜索第 k-(xMid-xBeg+1)小的数。 2. 当X[xMid] >= Y[yMid]时,在合并的数组中,原Y[yBeg...yMid]的所有元素一定在X[xMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于X[xMid]这个元素,故以后没有必要搜索 X[xMid...xEnd]这些元素,可弃X后半段数据。
此时只需递归的对X序列的前半段+Y序列,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于Y[yMid]这个元素,故以后没有必要搜索 Y[yBeg...yMid]这些元素,可弃Y前半段数据。
此时只需递归的对X序列+Y序列的后半段,去搜索第 k-(yMid-yBeg+1)小的数。
代码实现
#include <stdio.h>
#include <stdlib.h>
#define maxn 100010
int a[maxn], b[maxn], k; int f(int la,int ra,int lb,int rb)
{
int halflen, ma, mb;
if(lb > rb) return a[la+k-1];//递归边界
if(la > ra) return b[lb+k-1];//递归边界
ma = (ra + la) / 2;
mb = (rb + lb) / 2;
halflen = ma - la + mb - lb + 2;
if(a[ma] < b[mb])
{
if(k < halflen) return f(la, ra, lb, mb-1);
k -= (ma - la + 1);
return f(ma + 1, ra, lb, rb);
}
else
{
if(k < halflen) return f(la, ma-1, lb, rb);
k -= (mb - lb + 1);
return f(la, ra, mb + 1, rb);
}
} int main()
{
int m,n,i; scanf("%d%d%d",&m,&n,&k);
for(i = 0; i < m; i++)
scanf("%d", &a[i]);
for(i = 0; i < n; i++)
scanf("%d", &b[i]);
printf("%d\n",f(0, m-1, 0, n-1));
return 0;
}
17082 两个有序数序列中找第k小的更多相关文章
- 17082 两个有序数序列中找第k小(优先做)
17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC;VC Description 已 ...
- 17082 两个有序数序列中找第k小(优先做) O(logn)
17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC;VC Description 已 ...
- 寻找两个已序数组中的第k大元素
寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...
- 【算法剖析】寻找两个已序数组中的第k大元素
1.问题描述 给定两个数组A与B,其大小分别为m.n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n).例如,对于数组A=[1, ...
- 在线性级别时间内找出无序序列中的第k个元素
在一个无序序列中找出第k个元素,对于k很小或者很大时可以采取特殊的方法,比如用堆排序来实现 .但是对于与序列长度N成正比的k来说,就不是一件容易的事了,可能最容易想到的就是先将无序序列排序再遍历即可找 ...
- 两个有序数列找第k小
给定一个数组,数组中的数据无序,在一个数组中找出其第k个最小的数,例如对于数组x,x = {3,2,1,4,5,6},则其第2个最小的数为2 两个有序数组 找第k小 * 方案一 合并遍历 * 二:游 ...
- [LeetCode] Find K-th Smallest Pair Distance 找第K小的数对儿距离
Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...
- 快速排序算法的实现 && 随机生成区间里的数 && O(n)找第k小 && O(nlogk)找前k大
思路:固定一个数,把这个数放到合法的位置,然后左边的数都是比它小,右边的数都是比它大 固定权值选的是第一个数,或者一个随机数 因为固定的是左端点,所以一开始需要在右端点开始,找一个小于权值的数,从左端 ...
- [LeetCode] 719. Find K-th Smallest Pair Distance 找第K小的数对儿距离
Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...
随机推荐
- JS Date.Format
// 对Date的扩展,将 Date 转化为指定格式的String // 月(M).日(d).小时(h).分(m).秒(s).季度(q) 可以用 1-2 个占位符, // 年(y)可以用 1-4 个占 ...
- BackgroundWorker实现的winfrom中实现异步等待加载图片显示
BackgroundWorker简介 BackgroundWorker在winfrom中有对应控件,该有三个事件:DoWork .ProgressChanged 和 RunWorkerCompl ...
- EffectiveJava——复合优先于继承
继承时实现代码重用的重要手段,但它并非永远是完成这项工作的最佳工具,不恰当的使用会导致程序变得很脆弱,当然,在同一个程序员的控制下,使用继承会变的非常安全.想到了很有名的一句话,你永远不知道你的用户是 ...
- linux下mysql忘记root密码解决方法
如果使用 MySQL 数据库忘记了root账号密码,可以通过调节配置文件,跳过密码的方式登数据库, 在数据库里面修改账号密码,一般默认的账号是 root 1.编辑 MySQL 配置文件 my.cnf ...
- php生成静态文件
1,通用生成方法 //获取文件内容 $content=file_get_contents("http://www.google.com/" ); $id=110; $filenam ...
- Glide
1.简介 在泰国举行的谷歌开发者论坛上,谷歌为我们介绍了一个名叫 Glide 的图片加载库,作者是bumptech.这个库被广泛的运用在google的开源项目中,包括2014年google I/O大会 ...
- mysql root强密码的必要性max_allowed_packet被改成1024引起的风险
前两天运维反馈说,有些机器的max_allowed_packet隔两天就会被改成1024,导致客户端调用时出错,网上有说内存不够的,也有人工修改的. 运维小姑娘一口咬定肯定没有改过的,而且my.cnf ...
- Android详细的对话框AlertDialog.Builder使用方法
我们在平时做开发的时候,免不了会用到各种各样的对话框,相信有过其他平台开发经验的朋友都会知道,大部分的平台都只提供了几个最简单的实现,如果我们想实现自己特定需求的对话框,大家可能首先会想到,通过继 ...
- UIMenuController的使用
1, 基本使用 以对一个UILabel长按弹出菜单为例 子类化UILabel 因为需要覆盖这几个方法:- (BOOL)canBecomeFirstResponder; 返回YES 同时需要在每次UI元 ...
- Linux 学习手记(3):Linux基本的文件管理操作
复制文件和目录 在Linux中使用命令cp来复制文件或者目录,使用方式: cp 源文件(文件夹) 目标文件(文件夹) cp命令常用参数: -r 递归复制整个目录 -v 显示详细信息 移动.重命名一个文 ...