CodeForces 149D Coloring Brackets
Coloring Brackets
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
Input
The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.
Output
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
Examples
Input
(())
Output
12
Input
(()())
Output
40
Input
()
Output
4
Note
Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

The two ways of coloring shown below are incorrect.

题目大意:给定一个合法的括号序列,现在要你给括号序列染色。但是必须要满足如下条件:一、一个括号可以不染色,或者染红色,或者染蓝色;二、一对匹配的括号只能有一边染色(这里的匹配是唯一的对应,而不是只要是"()"就可,下同),且必须有一边染色;三、相邻的括号染的颜色必须不一样,但是可以都不染色。问你有多少种方案?因为方案数很大,所以结果模去1e9+7。
解题思路:容易看出这是一道DP题,并且是一道区间DP题。自己的DP很差,想了半天没想出来。于是去网上搜了一下别人的解法,瞬间恍然大悟了。设dp[l][r][x][y]表示区间[l,r]左端染的色是x,右端染的色是y的方案数,其中x,y取0,1,2,分别表示不染色,染红色,染蓝色。则该区间有三种情况,如下:
1、l+1==r,那么它们一定就是一对匹配的括号,此时,只可能有四种情况,方案数均为1,即:dp[l][r][0][1] = dp[l][r][1][0] = 1;dp[l][r][0][2] = dp[l][r][2][0] = 1;
2、l和r是一对匹配的括号,此时,区间被分为两部分,两端点以及区间[l+1,r-1],那么我们可以先算出区间[l+1,r-1]的方案数,再由此状态转移到当前区间,两端点情况也就四种,不冲突即可转移,详见代码;
3、l和r不是一对匹配的括号,此时,区间也可被分成两部分,区间[l,mid]和区间[mid+1,r],其中mid为l所对应与之匹配的括号,这样,一个合法的括号序列变成两个合法的括号序列,将它们分别求出方案数,再将不冲突的情况组合起来即可,详见代码。
附上AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int mod = ;
ll dp[maxn][maxn][][];
string str;
stack<int> s;
map<int, int> pos; void get_match(){
for (int i=; i<str.size(); ++i){
if (str[i] == '(')
s.push(i);
else{
pos[i] = s.top();
pos[s.top()] = i;
s.pop();
}
}
} void dfs(int l, int r){
if (l+ == r){
dp[l][r][][] = dp[l][r][][] = ;
dp[l][r][][] = dp[l][r][][] = ;
return ;
}
if (pos[l] == r){
dfs(l+, r-);
for (int i=; i<; ++i)
for (int j=; j<; ++j){
if (j != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (j != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (i != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (i != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
}
return ;
}
int mid = pos[l];
dfs(l, mid);
dfs(mid+, r);
for (int i=; i<; ++i)
for (int j=; j<; ++j)
for (int k=; k<; ++k)
for (int s=; s<; ++s)
if (!(k==&&s==) && !(k==&&s==))
dp[l][r][i][j] = (dp[l][r][i][j]+dp[l][mid][i][k]*dp[mid+][r][s][j])%mod;
} int main(){
ios::sync_with_stdio(false);
cin.tie();
cin >> str;
get_match();
dfs(, str.size()-);
ll ans = ;
for (int i=; i<; ++i)
for (int j=; j<; ++j)
ans = (ans+dp[][str.size()-][i][j])%mod;
cout << ans << endl;
return ;
}
CodeForces 149D Coloring Brackets的更多相关文章
- codeforces 149D Coloring Brackets (区间DP + dfs)
题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...
- Codeforces 149D Coloring Brackets(树型DP)
题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...
- CodeForces 149D Coloring Brackets 区间DP
http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...
- CodeForces 149D Coloring Brackets (区间DP)
题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...
- CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)
1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...
- codeforce 149D Coloring Brackets 区间DP
题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...
- CF 149D Coloring Brackets 区间dp ****
给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...
- Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp
题目链接: http://codeforces.com/problemset/problem/149/D D. Coloring Brackets time limit per test2 secon ...
- Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP
题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...
随机推荐
- 【cocos2d-x 手游研发小技巧(8)通讯的数据压缩与解压 】
今天说一下手机游戏通讯协议中的数据问题,大量的数据将给服务器端和客户端带来很大的压力,一般来说. 转载请注明出处:http://www.cnblogs.com/zisou/p/cocos2dxJQ-8 ...
- Spring3系列6 - Spring 表达式语言(Spring EL)
Spring3系列6-Spring 表达式语言(Spring EL) 本篇讲述了Spring Expression Language —— 即Spring3中功能丰富强大的表达式语言,简称SpEL.S ...
- Nhibernate基础
Nhibernate(英文冬眠的意思) 常用方法 Contains Evict Clear 在 NHibernate 中一切必须是 Virtual 的吗? http://www.cnblogs.co ...
- Objective-C学习备忘录:Clang编译器编译运行Objective-C代码
我们都知道可以通过Apple公司的Xcode工具来学习Objective-C编程语言,但是能不能脱离XCode这个IDE进行Objective-C学习呢?当然是可以的.首先作为计算机科班出身的程序员都 ...
- HP P1008打印机如何打印特殊纸张
一.问题的提出 HP P1008中间有一个进纸槽,这是干什么的? 二.问题的分析 查说明,说这个进纸槽是叫做优先进纸槽,用于各种非常规的纸张的打印. 三.问题的解决 弄一张特殊尺寸的纸张,打开要编辑的 ...
- Qt label加边框
myLabel->setStyleSheet("border:1px solid black"); 简要说明:border就是边缘.px是像素,1px就是边框的宽度.soli ...
- Java框架篇---Mybatis 入门
一.Mybatis介绍 MyBatis是一款一流的支持自定义SQL.存储过程和高级映射的持久化框架.MyBatis几乎消除了所有的JDBC代码,也基本不需要手工去设置参数和获取检索结果.MyBatis ...
- Linux 时钟与计时器
对 Linux 系统来说,时钟和计时器是两个十分重要的概念.时钟反应的是绝对时间,也可认为是实时时间.计时器反应的则是相对时间,即相对于系统启动后的计时.操作系统内核需要管理运行时间(uptime)和 ...
- 【转载】Unix Shell中用[-n]判断字符串不为NULL
转载自:http://blog.sina.com.cn/s/blog_541086430100mosm.html 在Unix Shell中,可以使用-n来判断一个string不是NULL值,但是之前却 ...
- python面试题大全(二)
转载请注明出处http://www.cnblogs.com/goodhacker/p/3387027.html 1.python中类方法.类实例方法.静态方法有何区别? 区别: 类方法和静态方法都可以 ...