Coloring Brackets

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.

In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

  • Each bracket is either not colored any color, or is colored red, or is colored blue.
  • For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
  • No two neighboring colored brackets have the same color.

Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.

Output

Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).

Examples

Input

(())

Output

12

Input

(()())

Output

40

Input

()

Output

4

Note

Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

The two ways of coloring shown below are incorrect.

题目大意:给定一个合法的括号序列,现在要你给括号序列染色。但是必须要满足如下条件:一、一个括号可以不染色,或者染红色,或者染蓝色;二、一对匹配的括号只能有一边染色(这里的匹配是唯一的对应,而不是只要是"()"就可,下同),且必须有一边染色;三、相邻的括号染的颜色必须不一样,但是可以都不染色。问你有多少种方案?因为方案数很大,所以结果模去1e9+7。

解题思路:容易看出这是一道DP题,并且是一道区间DP题。自己的DP很差,想了半天没想出来。于是去网上搜了一下别人的解法,瞬间恍然大悟了。设dp[l][r][x][y]表示区间[l,r]左端染的色是x,右端染的色是y的方案数,其中x,y取0,1,2,分别表示不染色,染红色,染蓝色。则该区间有三种情况,如下:

1、l+1==r,那么它们一定就是一对匹配的括号,此时,只可能有四种情况,方案数均为1,即:dp[l][r][0][1] = dp[l][r][1][0] = 1;dp[l][r][0][2] = dp[l][r][2][0] = 1;

2、l和r是一对匹配的括号,此时,区间被分为两部分,两端点以及区间[l+1,r-1],那么我们可以先算出区间[l+1,r-1]的方案数,再由此状态转移到当前区间,两端点情况也就四种,不冲突即可转移,详见代码;

3、l和r不是一对匹配的括号,此时,区间也可被分成两部分,区间[l,mid]和区间[mid+1,r],其中mid为l所对应与之匹配的括号,这样,一个合法的括号序列变成两个合法的括号序列,将它们分别求出方案数,再将不冲突的情况组合起来即可,详见代码。

附上AC代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int mod = ;
ll dp[maxn][maxn][][];
string str;
stack<int> s;
map<int, int> pos; void get_match(){
for (int i=; i<str.size(); ++i){
if (str[i] == '(')
s.push(i);
else{
pos[i] = s.top();
pos[s.top()] = i;
s.pop();
}
}
} void dfs(int l, int r){
if (l+ == r){
dp[l][r][][] = dp[l][r][][] = ;
dp[l][r][][] = dp[l][r][][] = ;
return ;
}
if (pos[l] == r){
dfs(l+, r-);
for (int i=; i<; ++i)
for (int j=; j<; ++j){
if (j != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (j != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (i != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (i != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
}
return ;
}
int mid = pos[l];
dfs(l, mid);
dfs(mid+, r);
for (int i=; i<; ++i)
for (int j=; j<; ++j)
for (int k=; k<; ++k)
for (int s=; s<; ++s)
if (!(k==&&s==) && !(k==&&s==))
dp[l][r][i][j] = (dp[l][r][i][j]+dp[l][mid][i][k]*dp[mid+][r][s][j])%mod;
} int main(){
ios::sync_with_stdio(false);
cin.tie();
cin >> str;
get_match();
dfs(, str.size()-);
ll ans = ;
for (int i=; i<; ++i)
for (int j=; j<; ++j)
ans = (ans+dp[][str.size()-][i][j])%mod;
cout << ans << endl;
return ;
}

CodeForces 149D Coloring Brackets的更多相关文章

  1. codeforces 149D Coloring Brackets (区间DP + dfs)

    题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...

  2. Codeforces 149D Coloring Brackets(树型DP)

    题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...

  3. CodeForces 149D Coloring Brackets 区间DP

    http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...

  4. CodeForces 149D Coloring Brackets (区间DP)

    题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...

  5. CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)

    1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...

  6. codeforce 149D Coloring Brackets 区间DP

    题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...

  7. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

  8. Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp

    题目链接: http://codeforces.com/problemset/problem/149/D D. Coloring Brackets time limit per test2 secon ...

  9. Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...

随机推荐

  1. Linux64位服务器编译安装MySQL5.6(CentOS6.4)

    首先到MySQL官网下载MySQL最新版(目前是mysql-5.6.12)上传到服务器上,下面说一下详细的安装过程. 安装依赖包,可以在线更新也可以配置本地源(CentOS本地源配置)yum -y i ...

  2. 解决URL路径包含+等特殊符号,编码也无效的办法

    <?xml version="1.0" encoding="UTF-8"?><configuration>      <syste ...

  3. 修改 上传图片按钮input-file样式。。

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  4. SkipList 跳表

    1.定义描述      跳跃列表(也称跳表)是一种随机化数据结构,基于并联的链表,其效率可比拟于二叉查找树(对于大多数操作需要O(log n)平均时间).      基本上,跳跃列表是对有序的链表增加 ...

  5. 【转载】C#之int与Java之Integer的区别

    本文涉及到一些JVM原理和Java的字节码指令,推荐感兴趣的读者阅读一本有关JVM的经典书籍<深入Java虚拟机(第2版)>,将它与我在<.NET 4.0面向对象编程漫谈>中介 ...

  6. 爆料喽!!!开源日志库Logger的使用秘籍

    日志对于开发来说是非常重要的,不管是调试数据查看.bug问题追踪定位.数据信息收集统计,日常工作运行维护等等,都大量的使用到.今天介绍著名开源日志库Logger的使用,库的地址:https://git ...

  7. 使用Html5+C#+微信 开发移动端游戏详细教程:(六)游戏界面布局与性能优化

    本篇教程我们主要讲解在游戏界面上的布局一般遵循哪些原则和一些性能优化的通用方法. 接着教程(五),我们通过Loading类一次性加载了全部图像素材,现在要把我们所用到的素材变成图片对象显示在界面上,由 ...

  8. Swift_3.0_取消杂乱无章的log输出

    一 举例: 输出的杂乱无章的东西 subsystem: com.apple.UIKit, category: HIDEventFiltered, enable_level: , persist_lev ...

  9. 使用Kibana 分析Nginx 日志并在 Dashboard上展示

    一.Kibana之Visualize 功能 在首页上Visualize 标签页用来设计可视化图形.你可以保存之前在discovery中的搜索来进行画图,然后保存该visualize,或者加载合并到 d ...

  10. Ioc原理及常用框架

    1 IoC理论的背景    我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑.  图1:软件系统中耦合的对象 如果我们 ...