CodeForces 149D Coloring Brackets
Coloring Brackets
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
Input
The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.
Output
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
Examples
Input
(())
Output
12
Input
(()())
Output
40
Input
()
Output
4
Note
Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

The two ways of coloring shown below are incorrect.

题目大意:给定一个合法的括号序列,现在要你给括号序列染色。但是必须要满足如下条件:一、一个括号可以不染色,或者染红色,或者染蓝色;二、一对匹配的括号只能有一边染色(这里的匹配是唯一的对应,而不是只要是"()"就可,下同),且必须有一边染色;三、相邻的括号染的颜色必须不一样,但是可以都不染色。问你有多少种方案?因为方案数很大,所以结果模去1e9+7。
解题思路:容易看出这是一道DP题,并且是一道区间DP题。自己的DP很差,想了半天没想出来。于是去网上搜了一下别人的解法,瞬间恍然大悟了。设dp[l][r][x][y]表示区间[l,r]左端染的色是x,右端染的色是y的方案数,其中x,y取0,1,2,分别表示不染色,染红色,染蓝色。则该区间有三种情况,如下:
1、l+1==r,那么它们一定就是一对匹配的括号,此时,只可能有四种情况,方案数均为1,即:dp[l][r][0][1] = dp[l][r][1][0] = 1;dp[l][r][0][2] = dp[l][r][2][0] = 1;
2、l和r是一对匹配的括号,此时,区间被分为两部分,两端点以及区间[l+1,r-1],那么我们可以先算出区间[l+1,r-1]的方案数,再由此状态转移到当前区间,两端点情况也就四种,不冲突即可转移,详见代码;
3、l和r不是一对匹配的括号,此时,区间也可被分成两部分,区间[l,mid]和区间[mid+1,r],其中mid为l所对应与之匹配的括号,这样,一个合法的括号序列变成两个合法的括号序列,将它们分别求出方案数,再将不冲突的情况组合起来即可,详见代码。
附上AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int mod = ;
ll dp[maxn][maxn][][];
string str;
stack<int> s;
map<int, int> pos; void get_match(){
for (int i=; i<str.size(); ++i){
if (str[i] == '(')
s.push(i);
else{
pos[i] = s.top();
pos[s.top()] = i;
s.pop();
}
}
} void dfs(int l, int r){
if (l+ == r){
dp[l][r][][] = dp[l][r][][] = ;
dp[l][r][][] = dp[l][r][][] = ;
return ;
}
if (pos[l] == r){
dfs(l+, r-);
for (int i=; i<; ++i)
for (int j=; j<; ++j){
if (j != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (j != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (i != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
if (i != )
dp[l][r][][] = (dp[l][r][][]+dp[l+][r-][i][j])%mod;
}
return ;
}
int mid = pos[l];
dfs(l, mid);
dfs(mid+, r);
for (int i=; i<; ++i)
for (int j=; j<; ++j)
for (int k=; k<; ++k)
for (int s=; s<; ++s)
if (!(k==&&s==) && !(k==&&s==))
dp[l][r][i][j] = (dp[l][r][i][j]+dp[l][mid][i][k]*dp[mid+][r][s][j])%mod;
} int main(){
ios::sync_with_stdio(false);
cin.tie();
cin >> str;
get_match();
dfs(, str.size()-);
ll ans = ;
for (int i=; i<; ++i)
for (int j=; j<; ++j)
ans = (ans+dp[][str.size()-][i][j])%mod;
cout << ans << endl;
return ;
}
CodeForces 149D Coloring Brackets的更多相关文章
- codeforces 149D Coloring Brackets (区间DP + dfs)
题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...
- Codeforces 149D Coloring Brackets(树型DP)
题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...
- CodeForces 149D Coloring Brackets 区间DP
http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...
- CodeForces 149D Coloring Brackets (区间DP)
题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...
- CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)
1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...
- codeforce 149D Coloring Brackets 区间DP
题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...
- CF 149D Coloring Brackets 区间dp ****
给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...
- Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp
题目链接: http://codeforces.com/problemset/problem/149/D D. Coloring Brackets time limit per test2 secon ...
- Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP
题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...
随机推荐
- 15款效果很酷的最新jQuery/CSS3特效
很久没来博客园发表文章了,今天就分享15款效果很酷的最新jQuery/CSS3特效,废话不说,一起来看看吧. 1.3D图片上下翻牌切换 一款基于jQuery+CSS3实现的3D图片上下翻牌切换效果,支 ...
- asp.net mvc 利用过滤器进行网站Meta设置
过去几年都是用asp.net webform进行开发东西,最近听说过时了,同时webform会产生ViewState(虽然我已经不用ruanat=server的控件好久了 :)),对企业应用无所谓,但 ...
- rm: 无法删除"/run/user/root/gvfs": 是一个目录 问题
2013-03-02 bxd@linux:~$ sudo su [sudo] password for bxd: root@linux:/home/bxd# exit exit rm: 无法删 ...
- Log4net介绍
一.Log4net介绍 log4net是一个功能著名的开源日志记录组件.利用log4net可以方便地将日志信息记录到文件.控制台.Windows事件日志和数据库(包括MS Server,Access, ...
- [转]c#截取指定长度的字符串
/// <summary> /// 截取指定長度的字符串 /// </summary> /// <param name="s"></par ...
- Go Go
Go Go *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important ...
- 怎样设置一个DIV在所有层的最上层,最上层DIV
怎样设置一个DIV在所有层的最上层,最上层DIV,其实很简单,只需要在这个DIV上使用这个样式即可,z-index:99999
- 免费下载!Twitter Bootstrap V3 矢量界面素材
Bootstrap 3 Vector UI Kit 包含所有矢量格式的 Twitter Bootstrap 3 界面控制元素.Glyphicons 以及额外的一些界面素材,而且基本的图形元素都切好图了 ...
- Mysql学习笔记(六)增删改查
PS:数据库最基本的操作就是增删改查了... 学习内容: 数据库的增删改查 1.增...其实就是向数据库中插入数据.. 插入语句 insert into table_name values(" ...
- Mysql学习笔记(五)数学与日期时间函数
学习内容: 1.数学函数 2.日期时间函数 这些函数都是很常用的函数...在这里进行简单的介绍... 数学函数: mysql); //取绝对值函数 这个函数可安全地使用于 BIGINT 值. mysq ...