POJ 3519 Minimal Backgammon
| Time Limit: 5000MS | Memory Limit: 65536K | |||
| Total Submissions: 1195 | Accepted: 700 | Special Judge | ||
Description
![]() Figure 2: An example game |
Here is a very simple variation of the game backgammon, named “Minimal Backgammon”. The game is played by only one player, using only one of the dice and only one checker (the token used by the player).
The game board is a line of (N + 1) squares labeled as 0 (the start) to N (the goal). At the beginning, the checker is placed on the start (square 0). The aim of the game is to bring the checker to the goal (square N). The checker proceeds as many squares as the roll of the dice. The dice generates six integers from 1 to 6 with equal probability.
The checker should not go beyond the goal. If the roll of the dice would bring the checker beyond the goal, the checker retreats from the goal as many squares as the excess. For example, if the checker is placed at the square (N − 3), the roll “5” brings the checker to the square (N − 2), because the excess beyond the goal is 2. At the next turn, the checker proceeds toward the goal as usual.
Each square, except the start and the goal, may be given one of the following two special instructions.
Lose one turn (labeled “L” in Figure 2)
If the checker stops here, you cannot move the checker in the next turn.Go back to the start (labeled “B” in Figure 2)
If the checker stops here, the checker is brought back to the start.
Given a game board configuration (the size N, and the placement of the special instructions), you are requested to compute the probability with which the game succeeds within a given number of turns.
Input
The input consists of multiple datasets, each containing integers in the following format.
N T L B
Lose1
⋯
LoseL
Back1
⋯
BackB
N is the index of the goal, which satisfies 5 ≤ N ≤ 100. T is the number of turns. You are requested to compute the probability of success within T turns. T satisfies 1 ≤ T ≤ 100. L is the number of squares marked “Lose one turn”, which satisfies 0 ≤ L ≤ N − 1. B is the number of squares marked “Go back to the start”, which satisfies 0 ≤ B ≤ N − 1. They are separated by a space.
Losei’s are the indexes of the squares marked “Lose one turn”, which satisfy 1 ≤ Losei ≤ N − 1. All Losei’s are distinct, and sorted in ascending order. Backi’s are the indexes of the squares marked “Go back to the start”, which satisfy 1 ≤ Backi ≤ N − 1. All Backi’s are distinct, and sorted in ascending order. No numbers occur both in Losei’s and Backi’s.
The end of the input is indicated by a line containing four zeros separated by a space.
Output
For each dataset, you should answer the probability with which the game succeeds within the given number of turns. The output should not contain an error greater than 0.00001.
Sample Input
6 1 0 0
7 1 0 0
7 2 0 0
6 6 1 1
2
5
7 10 0 6
1
2
3
4
5
6
0 0 0 0
Sample Output
0.166667
0.000000
0.166667
0.619642
0.000000
题目大意:第一行输入N,T,L,B,表示总共有编号为0-N的一排格子,N号格子为目标格子,其中有L个格子走到那些格子上要停止一次,B个格子,走到那些格子上就要直接返回到0号格子,紧接着输入L个数字表示要停止一次的格子的编号,后面是B个数字,表示要返回到0号格子的格子的编号,每一轮抛一枚骰子,骰子上是多少就前进几步,如果超出了编号为N的格子,则开始后退,问在T轮之内到达目标格子的概率。
解题方法:概率DP,dp[i][j]代表第i轮走到第j号格子的概率。
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std; double dp[][];//dp[i][j]代表第i轮走到第j号格子的概率 int main()
{
int Back[], Lose[], N, T, L, B, index;
while(scanf("%d%d%d%d", &N, &T, &L, &B) != EOF)
{
if (N == && T == && L == && B == )
{
break;
}
memset(dp, , sizeof(dp));
memset(Back, , sizeof(Back));
memset(Lose, , sizeof(Lose));
for (int i = ; i < L; i++)
{
scanf("%d", &index);
Lose[index] = ;//要停止一次的格子的编号
}
for (int i = ; i < B; i++)
{
scanf("%d", &index);
Back[index] = ;//要返回的格子的编号
}
dp[][] = ;
for (int i = ; i < T; i++)
{
for (int j = N - ; j >= ; j--)
{
if (dp[i][j] == )//如果第i轮到达j号格子的概率为0,则直接忽略
{
continue;
}
if (Back[j] == )
{//走到j号格子要返回0号格子,则第i步走到0号格子的概率加上dp[i][j]
dp[i][] += dp[i][j];
}
else
{
if (Lose[j] == )//如果走到j号格子要停止一次,直接跳过第i + 1轮
{
for (int k = ; k <= ; k++)
{
if (j + k <= N)
{
dp[i + ][j + k] += dp[i][j] / ;
}
else
{//如果走到超过最大值N,则从N开始后退
dp[i + ][ * N - j - k] += dp[i][j] / ;
}
}
}
else
{
for (int k = ; k <= ; k++)
{
if (j + k <= N)
{
dp[i + ][j + k] += dp[i][j] / ;
}
else
{
dp[i + ][ * N - j - k] += dp[i][j] / ;
}
}
}
}
}
}
double ans = ;
//从第1轮到第T轮到达终点的概率之和,因为每一轮都有可能到达终点
for (int i = ; i <= T; i++)
{
ans += dp[i][N];
}
printf("%.6f\n", ans);
}
return ;
}
POJ 3519 Minimal Backgammon的更多相关文章
- {POJ}{3925}{Minimal Ratio Tree}{最小生成树}
题意:给定完全无向图,求其中m个子节点,要求Sum(edge)/Sum(node)最小. 思路:由于N很小,枚举所有可能的子节点可能情况,然后求MST,memset()在POJ G++里面需要cstr ...
- POJ 1815 Friendship
Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 10626 Accepted: 2949 Descr ...
- [ACM训练] 算法初级 之 搜索算法 之 广度优先算法BFS (POJ 3278+1426+3126+3087+3414)
BFS算法与树的层次遍历很像,具有明显的层次性,一般都是使用队列来实现的!!! 常用步骤: 1.设置访问标记int visited[N],要覆盖所有的可能访问数据个数,这里设置成int而不是bool, ...
- POJ 1325 Machine Schedule——S.B.S.
Machine Schedule Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13731 Accepted: 5873 ...
- POJ 1236 Network of Schools(Tarjan缩点)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16806 Accepted: 66 ...
- poj 1266 Cover an Arc.
http://poj.org/problem?id=1266 Cover an Arc. Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- POJ 3414 Pots
Pots Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status ...
- poj 2594 Treasure Exploration (二分匹配)
Treasure Exploration Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 6558 Accepted: 2 ...
- poj 1651 Multiplication Puzzle (区间dp)
题目链接:http://poj.org/problem?id=1651 Description The multiplication puzzle is played with a row of ca ...
随机推荐
- Jstat在分析java的内存GC时的应用
jstat工具特别强大,有众多的可选项,详细查看堆内各个部分的使用量,以及加载类的数量.使用时,需加上查看进程的进程id,和所选参数. 执行:cd $JAVA_HOME/bin中执行jstat,注意j ...
- 彻底掌握this,call,apply
说起js里面比较头疼的知识点,this的指向,call与apply的理解这三者肯定算的上前几,好的js开发者这是必须迈过的槛.今天就总结下这三者紧密相连的关系. 首先推荐理解call的用法 Funct ...
- 【Linux高级驱动】LCD驱动框架分析
1.framebuffer接口层(fbmem.c) 功能:给用户提供接口 fbmem_init ),"fb",&fb_fops) /*2.创建一个设备类*/ fb_cl ...
- [Java拾遗三]JavaWeb基础之Servlet
Servlet 1,servlet介绍 servlet是一项动态web资源开发技术. 运行在服务器端. 作用:处理业务逻辑,生成动态的内容,返回给浏览器 ...
- celery简单入门
写作背景介绍 最近在做后台图像处理,需要使用到celery这个异步任务框架.但是使用的时候遇到很多技术问题,为了方便日后再遇到相似问题时能够快速解决.写下这篇文章也希望能够帮助共同奋战在同一战线的程序 ...
- 阅读开发高手的代码 分享二则.NET开发框架的技巧
最近阅读了一套ERP开发框架的源代码,对开发框架的理解又深入一层,也为其将知识点运用的如此灵活而自叹不如. 郎咸平教授说,国际金融炒家对国际金融知识的理解与运用程序,是不可想像的.1997年的亚洲金融 ...
- iOS开发实用技巧—项目新特性页面的处理
iOS开发实用技巧篇—项目新特性页面的处理 说明:本文主要说明在项目开发中会涉及到的最最简单的新特性界面(实用UIScrollView展示多张图片的轮播)的处理. 代码示例: 新建一个专门的处理新特性 ...
- 一个4节点Hadoop集群的配置示例
环境: 操作系统:CentOS 6.5 64bit Hadoop:Version 1.2.1 Servers:hadoopnamenode,hadoop2ndnamenode,hadoopdatano ...
- nginx 重写 rewrite 基础及实例
nginx rewrite 正则表达式匹配 大小写匹配 ~ 为区分大小写匹配 ~* 为不区分大小写匹配 !~和!~*分别为区分大小写不匹配及不区分大小写不匹配 文件及目录匹配 -f和!-f用来判断是否 ...
- Logstash——multiline 插件,匹配多行日志
本文内容 测试数据 字段属性 按多行解析运行时日志 把多行日志解析到字段 参考资料 在处理日志时,除了访问日志外,还要处理运行时日志,该日志大都用程序写的,比如 log4j.运行时日志跟访问日志最大的 ...
