概要

前面分别介绍红黑树的理论知识、红黑树的C语言C++的实现。本章介绍红黑树的Java实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章。还是那句老话,红黑树的C/C++/Java实现,原理一样,择其一了解即可。

目录
1. 红黑树的介绍
2. 红黑树的Java实现(代码说明)
3. 红黑树的Java实现(完整源码)
4. 红黑树的Java测试程序

转载请注明出处:


更多内容:数据结构与算法系列 目录

(01) 红黑树(一)之 原理和算法详细介绍
(02) 红黑树(二)之 C语言的实现
(03) 红黑树(三)之 Linux内核中红黑树的经典实现(04) 红黑树(四)之 C++的实现(05) 红黑树(五)之 Java的实现(06) 红黑树(六)之 参考资料

红黑树的介绍

红黑树(Red-Black Tree,简称R-B Tree),它一种特殊的二叉查找树。
红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点所包含的键值,大于等于左孩子的键值,小于等于右孩子的键值。
除了具备该特性之外,红黑树还包括许多额外的信息。

红黑树的每个节点上都有存储位表示节点的颜色,颜色是红(Red)或黑(Black)。
红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

关于它的特性,需要注意的是:
第一,特性(3)中的叶子节点,是只为空(NIL或null)的节点。
第二,特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。

红黑树示意图如下:

红黑树的Java实现(代码说明)

红黑树的基本操作是添加删除旋转。在对红黑树进行添加或删除后,会用到旋转方法。为什么呢?道理很简单,添加或删除红黑树中的节点之后,红黑树就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。而通过旋转,可以使这颗树重新成为红黑树。简单点说,旋转的目的是让树保持红黑树的特性。
旋转包括两种:左旋右旋。下面分别对红黑树的基本操作进行介绍。

1. 基本定义

public class RBTree<T extends Comparable<T>> {

    private RBTNode<T> mRoot;    // 根结点

    private static final boolean RED   = false;
private static final boolean BLACK = true; public class RBTNode<T extends Comparable<T>> {
boolean color; // 颜色
T key; // 关键字(键值)
RBTNode<T> left; // 左孩子
RBTNode<T> right; // 右孩子
RBTNode<T> parent; // 父结点 public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) {
this.key = key;
this.color = color;
this.parent = parent;
this.left = left;
this.right = right;
} } ...
}

RBTree是红黑树对应的类,RBTNode是红黑树的节点类。在RBTree中包含了根节点mRoot和红黑树的相关API。
注意:在实现红黑树API的过程中,我重载了许多函数。重载的原因,一是因为有的API是内部接口,有的是外部接口;二是为了让结构更加清晰。

2. 左旋

对x进行左旋,意味着"将x变成一个左节点"。

左旋的实现代码(Java语言)

/*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)-. / \ #
* lx y x ry
* / \ / \
* ly ry lx ly
*
*
*/
private void leftRotate(RBTNode<T> x) {
// 设置x的右孩子为y
RBTNode<T> y = x.right; // 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x.right = y.left;
if (y.left != null)
y.left.parent = x; // 将 “x的父亲” 设为 “y的父亲”
y.parent = x.parent; if (x.parent == null) {
this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
} else {
if (x.parent.left == x)
x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
} // 将 “x” 设为 “y的左孩子”
y.left = x;
// 将 “x的父节点” 设为 “y”
x.parent = y;
}

3. 右旋

对y进行左旋,意味着"将y变成一个右节点"。

右旋的实现代码(Java语言)

/*
* 对红黑树的节点(y)进行右旋转
*
* 右旋示意图(对节点y进行左旋):
* py py
* / /
* y x
* / \ --(右旋)-. / \ #
* x ry lx y
* / \ / \ #
* lx rx rx ry
*
*/
private void rightRotate(RBTNode<T> y) {
// 设置x是当前节点的左孩子。
RBTNode<T> x = y.left; // 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y.left = x.right;
if (x.right != null)
x.right.parent = y; // 将 “y的父亲” 设为 “x的父亲”
x.parent = y.parent; if (y.parent == null) {
this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
} else {
if (y == y.parent.right)
y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
} // 将 “y” 设为 “x的右孩子”
x.right = y; // 将 “y的父节点” 设为 “x”
y.parent = x;
}

4. 添加

将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过"旋转和重新着色"等一系列操作来修正该树,使之重新成为一颗红黑树。详细描述如下:
第一步: 将红黑树当作一颗二叉查找树,将节点插入。
       红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。
好吧?那接下来,我们就来想方设法的旋转以及重新着色,使这颗树重新成为红黑树!

第二步:将插入的节点着色为"红色"。
       为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
      将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。o(∩∩)o...哈哈

第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
       第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
       对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
       对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
       对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
       对于"特性(4)",是有可能违背的!
       那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。

添加操作的实现代码(Java语言)

/*
* 将结点插入到红黑树中
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的node
*/
private void insert(RBTNode<T> node) {
int cmp;
RBTNode<T> y = null;
RBTNode<T> x = this.mRoot; // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
while (x != null) {
y = x;
cmp = node.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
} node.parent = y;
if (y!=null) {
cmp = node.key.compareTo(y.key);
if (cmp < 0)
y.left = node;
else
y.right = node;
} else {
this.mRoot = node;
} // 2. 设置节点的颜色为红色
node.color = RED; // 3. 将它重新修正为一颗二叉查找树
insertFixUp(node);
} /*
* 新建结点(key),并将其插入到红黑树中
*
* 参数说明:
* key 插入结点的键值
*/
public void insert(T key) {
RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null); // 如果新建结点失败,则返回。
if (node != null)
insert(node);
}

内部接口 -- insert(node)的作用是将"node"节点插入到红黑树中。
外部接口 -- insert(key)的作用是将"key"添加到红黑树中。

添加修正操作的实现代码(Java语言)

/*
* 红黑树插入修正函数
*
* 在向红黑树中插入节点之后(失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的z
*/
private void insertFixUp(RBTNode<T> node) {
RBTNode<T> parent, gparent; // 若“父节点存在,并且父节点的颜色是红色”
while (((parent = parentOf(node))!=null) && isRed(parent)) {
gparent = parentOf(parent); //若“父节点”是“祖父节点的左孩子”
if (parent == gparent.left) {
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.right;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
} // Case 2条件:叔叔是黑色,且当前节点是右孩子
if (parent.right == node) {
RBTNode<T> tmp;
leftRotate(parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是左孩子。
setBlack(parent);
setRed(gparent);
rightRotate(gparent);
} else { //若“z的父节点”是“z的祖父节点的右孩子”
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.left;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
} // Case 2条件:叔叔是黑色,且当前节点是左孩子
if (parent.left == node) {
RBTNode<T> tmp;
rightRotate(parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是右孩子。
setBlack(parent);
setRed(gparent);
leftRotate(gparent);
}
} // 将根节点设为黑色
setBlack(this.mRoot);
}

insertFixUp(node)的作用是对应"上面所讲的第三步"。它是一个内部接口。

5. 删除操作

将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。详细描述如下:
第一步:将红黑树当作一颗二叉查找树,将节点删除。
       这和"删除常规二叉查找树中删除节点的方法是一样的"。分3种情况:
① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给"被删除节点"之后,再将后继节点删除。这样就巧妙的将问题转换为"删除后继节点"的情况了,下面就考虑后继节点。 在"被删除节点"有两个非空子节点的情况下,它的后继节点不可能是双子非空。既然"的后继节点"不可能双子都非空,就意味着"该节点的后继节点"要么没有儿子,要么只有一个儿子。若没有儿子,则按"情况① "进行处理;若只有一个儿子,则按"情况② "进行处理。

第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。
        因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正该树,使之重新成为一棵红黑树。

删除操作的实现代码(Java语言)

/*
* 删除结点(node),并返回被删除的结点
*
* 参数说明:
* node 删除的结点
*/
private void remove(RBTNode<T> node) {
RBTNode<T> child, parent;
boolean color; // 被删除节点的"左右孩子都不为空"的情况。
if ( (node.left!=null) && (node.right!=null) ) {
// 被删节点的后继节点。(称为"取代节点")
// 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
RBTNode<T> replace = node; // 获取后继节点
replace = replace.right;
while (replace.left != null)
replace = replace.left; // "node节点"不是根节点(只有根节点不存在父节点)
if (parentOf(node)!=null) {
if (parentOf(node).left == node)
parentOf(node).left = replace;
else
parentOf(node).right = replace;
} else {
// "node节点"是根节点,更新根节点。
this.mRoot = replace;
} // child是"取代节点"的右孩子,也是需要"调整的节点"。
// "取代节点"肯定不存在左孩子!因为它是一个后继节点。
child = replace.right;
parent = parentOf(replace);
// 保存"取代节点"的颜色
color = colorOf(replace); // "被删除节点"是"它的后继节点的父节点"
if (parent == node) {
parent = replace;
} else {
// child不为空
if (child!=null)
setParent(child, parent);
parent.left = child; replace.right = node.right;
setParent(node.right, replace);
} replace.parent = node.parent;
replace.color = node.color;
replace.left = node.left;
node.left.parent = replace; if (color == BLACK)
removeFixUp(child, parent); node = null;
return ;
} if (node.left !=null) {
child = node.left;
} else {
child = node.right;
} parent = node.parent;
// 保存"取代节点"的颜色
color = node.color; if (child!=null)
child.parent = parent; // "node节点"不是根节点
if (parent!=null) {
if (parent.left == node)
parent.left = child;
else
parent.right = child;
} else {
this.mRoot = child;
} if (color == BLACK)
removeFixUp(child, parent);
node = null;
} /*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 红黑树的根结点
* z 删除的结点
*/
public void remove(T key) {
RBTNode<T> node; if ((node = search(mRoot, key)) != null)
remove(node);
}

内部接口 -- remove(node)的作用是将"node"节点插入到红黑树中。
外部接口 -- remove(key)删除红黑树中键值为key的节点。

删除修正操作的实现代码(Java语言)

/*
* 红黑树删除修正函数
*
* 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 待修正的节点
*/
private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) {
RBTNode<T> other; while ((node==null || isBlack(node)) && (node != this.mRoot)) {
if (parent.left == node) {
other = parent.right;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
leftRotate(parent);
other = parent.right;
} if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else { if (other.right==null || isBlack(other.right)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.left);
setRed(other);
rightRotate(other);
other = parent.right;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.right);
leftRotate(parent);
node = this.mRoot;
break;
}
} else { other = parent.left;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
rightRotate(parent);
other = parent.left;
} if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else { if (other.left==null || isBlack(other.left)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.right);
setRed(other);
leftRotate(other);
other = parent.left;
} // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.left);
rightRotate(parent);
node = this.mRoot;
break;
}
}
} if (node!=null)
setBlack(node);
}

removeFixup(node, parent)是对应"上面所讲的第三步"。它是一个内部接口。

红黑树的Java实现(完整源码)

下面是红黑树实现的完整代码和相应的测试程序。
(1) 除了上面所说的"左旋"、"右旋"、"添加"、"删除"等基本操作之后,还实现了"遍历"、"查找"、"打印"、"最小值"、"最大值"、"创建"、"销毁"等接口。
(2) 函数接口大多分为内部接口和外部接口。内部接口是private函数,外部接口则是public函数。
(3) 测试代码中提供了"插入"和"删除"动作的检测开关。默认是关闭的,打开方法可以参考"代码中的说明"。建议在打开开关后,在草稿上自己动手绘制一下红黑树。

红黑树的实现文件(RBTree.java)

 /**
* Java 语言: 红黑树
*
* @author skywang
* @date 2013/11/07
*/ public class RBTree<T extends Comparable<T>> { private RBTNode<T> mRoot; // 根结点 private static final boolean RED = false;
private static final boolean BLACK = true; public class RBTNode<T extends Comparable<T>> {
boolean color; // 颜色
T key; // 关键字(键值)
RBTNode<T> left; // 左孩子
RBTNode<T> right; // 右孩子
RBTNode<T> parent; // 父结点 public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) {
this.key = key;
this.color = color;
this.parent = parent;
this.left = left;
this.right = right;
} public T getKey() {
return key;
} public String toString() {
return ""+key+(this.color==RED?"(R)":"B");
}
} public RBTree() {
mRoot=null;
} private RBTNode<T> parentOf(RBTNode<T> node) {
return node!=null ? node.parent : null;
}
private boolean colorOf(RBTNode<T> node) {
return node!=null ? node.color : BLACK;
}
private boolean isRed(RBTNode<T> node) {
return ((node!=null)&&(node.color==RED)) ? true : false;
}
private boolean isBlack(RBTNode<T> node) {
return !isRed(node);
}
private void setBlack(RBTNode<T> node) {
if (node!=null)
node.color = BLACK;
}
private void setRed(RBTNode<T> node) {
if (node!=null)
node.color = RED;
}
private void setParent(RBTNode<T> node, RBTNode<T> parent) {
if (node!=null)
node.parent = parent;
}
private void setColor(RBTNode<T> node, boolean color) {
if (node!=null)
node.color = color;
} /*
* 前序遍历"红黑树"
*/
private void preOrder(RBTNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
} public void preOrder() {
preOrder(mRoot);
} /*
* 中序遍历"红黑树"
*/
private void inOrder(RBTNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
} public void inOrder() {
inOrder(mRoot);
} /*
* 后序遍历"红黑树"
*/
private void postOrder(RBTNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
} public void postOrder() {
postOrder(mRoot);
} /*
* (递归实现)查找"红黑树x"中键值为key的节点
*/
private RBTNode<T> search(RBTNode<T> x, T key) {
if (x==null)
return x; int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
} public RBTNode<T> search(T key) {
return search(mRoot, key);
} /*
* (非递归实现)查找"红黑树x"中键值为key的节点
*/
private RBTNode<T> iterativeSearch(RBTNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key); if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
} return x;
} public RBTNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
} /*
* 查找最小结点:返回tree为根结点的红黑树的最小结点。
*/
private RBTNode<T> minimum(RBTNode<T> tree) {
if (tree == null)
return null; while(tree.left != null)
tree = tree.left;
return tree;
} public T minimum() {
RBTNode<T> p = minimum(mRoot);
if (p != null)
return p.key; return null;
} /*
* 查找最大结点:返回tree为根结点的红黑树的最大结点。
*/
private RBTNode<T> maximum(RBTNode<T> tree) {
if (tree == null)
return null; while(tree.right != null)
tree = tree.right;
return tree;
} public T maximum() {
RBTNode<T> p = maximum(mRoot);
if (p != null)
return p.key; return null;
} /*
* 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
*/
public RBTNode<T> successor(RBTNode<T> x) {
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x.right != null)
return minimum(x.right); // 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
RBTNode<T> y = x.parent;
while ((y!=null) && (x==y.right)) {
x = y;
y = y.parent;
} return y;
} /*
* 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
*/
public RBTNode<T> predecessor(RBTNode<T> x) {
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x.left != null)
return maximum(x.left); // 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
RBTNode<T> y = x.parent;
while ((y!=null) && (x==y.left)) {
x = y;
y = y.parent;
} return y;
} /*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)-. / \ #
* lx y x ry
* / \ / \
* ly ry lx ly
*
*
*/
private void leftRotate(RBTNode<T> x) {
// 设置x的右孩子为y
RBTNode<T> y = x.right; // 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x.right = y.left;
if (y.left != null)
y.left.parent = x; // 将 “x的父亲” 设为 “y的父亲”
y.parent = x.parent; if (x.parent == null) {
this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
} else {
if (x.parent.left == x)
x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
} // 将 “x” 设为 “y的左孩子”
y.left = x;
// 将 “x的父节点” 设为 “y”
x.parent = y;
} /*
* 对红黑树的节点(y)进行右旋转
*
* 右旋示意图(对节点y进行左旋):
* py py
* / /
* y x
* / \ --(右旋)-. / \ #
* x ry lx y
* / \ / \ #
* lx rx rx ry
*
*/
private void rightRotate(RBTNode<T> y) {
// 设置x是当前节点的左孩子。
RBTNode<T> x = y.left; // 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y.left = x.right;
if (x.right != null)
x.right.parent = y; // 将 “y的父亲” 设为 “x的父亲”
x.parent = y.parent; if (y.parent == null) {
this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
} else {
if (y == y.parent.right)
y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
} // 将 “y” 设为 “x的右孩子”
x.right = y; // 将 “y的父节点” 设为 “x”
y.parent = x;
} /*
* 红黑树插入修正函数
*
* 在向红黑树中插入节点之后(失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的z
*/
private void insertFixUp(RBTNode<T> node) {
RBTNode<T> parent, gparent; // 若“父节点存在,并且父节点的颜色是红色”
while (((parent = parentOf(node))!=null) && isRed(parent)) {
gparent = parentOf(parent); //若“父节点”是“祖父节点的左孩子”
if (parent == gparent.left) {
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.right;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
} // Case 2条件:叔叔是黑色,且当前节点是右孩子
if (parent.right == node) {
RBTNode<T> tmp;
leftRotate(parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是左孩子。
setBlack(parent);
setRed(gparent);
rightRotate(gparent);
} else { //若“z的父节点”是“z的祖父节点的右孩子”
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.left;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
} // Case 2条件:叔叔是黑色,且当前节点是左孩子
if (parent.left == node) {
RBTNode<T> tmp;
rightRotate(parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是右孩子。
setBlack(parent);
setRed(gparent);
leftRotate(gparent);
}
} // 将根节点设为黑色
setBlack(this.mRoot);
} /*
* 将结点插入到红黑树中
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的node
*/
private void insert(RBTNode<T> node) {
int cmp;
RBTNode<T> y = null;
RBTNode<T> x = this.mRoot; // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
while (x != null) {
y = x;
cmp = node.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
} node.parent = y;
if (y!=null) {
cmp = node.key.compareTo(y.key);
if (cmp < 0)
y.left = node;
else
y.right = node;
} else {
this.mRoot = node;
} // 2. 设置节点的颜色为红色
node.color = RED; // 3. 将它重新修正为一颗二叉查找树
insertFixUp(node);
} /*
* 新建结点(key),并将其插入到红黑树中
*
* 参数说明:
* key 插入结点的键值
*/
public void insert(T key) {
RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null); // 如果新建结点失败,则返回。
if (node != null)
insert(node);
} /*
* 红黑树删除修正函数
*
* 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 待修正的节点
*/
private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) {
RBTNode<T> other; while ((node==null || isBlack(node)) && (node != this.mRoot)) {
if (parent.left == node) {
other = parent.right;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
leftRotate(parent);
other = parent.right;
} if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else { if (other.right==null || isBlack(other.right)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.left);
setRed(other);
rightRotate(other);
other = parent.right;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.right);
leftRotate(parent);
node = this.mRoot;
break;
}
} else { other = parent.left;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
rightRotate(parent);
other = parent.left;
} if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else { if (other.left==null || isBlack(other.left)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.right);
setRed(other);
leftRotate(other);
other = parent.left;
} // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.left);
rightRotate(parent);
node = this.mRoot;
break;
}
}
} if (node!=null)
setBlack(node);
} /*
* 删除结点(node),并返回被删除的结点
*
* 参数说明:
* node 删除的结点
*/
private void remove(RBTNode<T> node) {
RBTNode<T> child, parent;
boolean color; // 被删除节点的"左右孩子都不为空"的情况。
if ( (node.left!=null) && (node.right!=null) ) {
// 被删节点的后继节点。(称为"取代节点")
// 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
RBTNode<T> replace = node; // 获取后继节点
replace = replace.right;
while (replace.left != null)
replace = replace.left; // "node节点"不是根节点(只有根节点不存在父节点)
if (parentOf(node)!=null) {
if (parentOf(node).left == node)
parentOf(node).left = replace;
else
parentOf(node).right = replace;
} else {
// "node节点"是根节点,更新根节点。
this.mRoot = replace;
} // child是"取代节点"的右孩子,也是需要"调整的节点"。
// "取代节点"肯定不存在左孩子!因为它是一个后继节点。
child = replace.right;
parent = parentOf(replace);
// 保存"取代节点"的颜色
color = colorOf(replace); // "被删除节点"是"它的后继节点的父节点"
if (parent == node) {
parent = replace;
} else {
// child不为空
if (child!=null)
setParent(child, parent);
parent.left = child; replace.right = node.right;
setParent(node.right, replace);
} replace.parent = node.parent;
replace.color = node.color;
replace.left = node.left;
node.left.parent = replace; if (color == BLACK)
removeFixUp(child, parent); node = null;
return ;
} if (node.left !=null) {
child = node.left;
} else {
child = node.right;
} parent = node.parent;
// 保存"取代节点"的颜色
color = node.color; if (child!=null)
child.parent = parent; // "node节点"不是根节点
if (parent!=null) {
if (parent.left == node)
parent.left = child;
else
parent.right = child;
} else {
this.mRoot = child;
} if (color == BLACK)
removeFixUp(child, parent);
node = null;
} /*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 红黑树的根结点
* z 删除的结点
*/
public void remove(T key) {
RBTNode<T> node; if ((node = search(mRoot, key)) != null)
remove(node);
} /*
* 销毁红黑树
*/
private void destroy(RBTNode<T> tree) {
if (tree==null)
return ; if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right); tree=null;
} public void clear() {
destroy(mRoot);
mRoot = null;
} /*
* 打印"红黑树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(RBTNode<T> tree, T key, int direction) { if(tree != null) { if(direction==0) // tree是根节点
System.out.printf("%2d(B) is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left"); print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
} public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}
}

红黑树的测试文件(RBTreeTest.java)

 /**
* Java 语言: 二叉查找树
*
* @author skywang
* @date 2013/11/07
*/
public class RBTreeTest { private static final int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
private static final boolean mDebugInsert = false; // "插入"动作的检测开关(false,关闭;true,打开)
private static final boolean mDebugDelete = false; // "删除"动作的检测开关(false,关闭;true,打开) public static void main(String[] args) {
int i, ilen = a.length;
RBTree<Integer> tree=new RBTree<Integer>(); System.out.printf("== 原始数据: ");
for(i=0; i<ilen; i++)
System.out.printf("%d ", a[i]);
System.out.printf("\n"); for(i=0; i<ilen; i++) {
tree.insert(a[i]);
// 设置mDebugInsert=true,测试"添加函数"
if (mDebugInsert) {
System.out.printf("== 添加节点: %d\n", a[i]);
System.out.printf("== 树的详细信息: \n");
tree.print();
System.out.printf("\n");
}
} System.out.printf("== 前序遍历: ");
tree.preOrder(); System.out.printf("\n== 中序遍历: ");
tree.inOrder(); System.out.printf("\n== 后序遍历: ");
tree.postOrder();
System.out.printf("\n"); System.out.printf("== 最小值: %s\n", tree.minimum());
System.out.printf("== 最大值: %s\n", tree.maximum());
System.out.printf("== 树的详细信息: \n");
tree.print();
System.out.printf("\n"); // 设置mDebugDelete=true,测试"删除函数"
if (mDebugDelete) {
for(i=0; i<ilen; i++)
{
tree.remove(a[i]); System.out.printf("== 删除节点: %d\n", a[i]);
System.out.printf("== 树的详细信息: \n");
tree.print();
System.out.printf("\n");
}
} // 销毁二叉树
tree.clear();
}
}

红黑树的Java测试程序

前面已经给出了红黑树的测试代码(RBTreeTest.java),这里就不再重复说明。下面是测试程序的运行结果:

== 原始数据: 10 40 30 60 90 70 20 50 80
== 前序遍历: 30 10 20 60 40 50 80 70 90
== 中序遍历: 10 20 30 40 50 60 70 80 90
== 后序遍历: 20 10 50 40 70 90 80 60 30
== 最小值: 10
== 最大值: 90
== 树的详细信息:
30(B) is root
10(B) is 30's left child
20(R) is 10's right child
60(R) is 30's right child
40(B) is 60's left child
50(R) is 40's right child
80(B) is 60's right child
70(R) is 80's left child
90(R) is 80's right child

红黑树(五)之 Java的实现的更多相关文章

  1. 红黑树的插入Java实现

    package practice; public class TestMain { public static void main(String[] args) { int[] ao = {5, 1, ...

  2. 【数据结构】红黑树-Java实现

    WIKI:https://en.wikipedia.org/wiki/Red%E2%80%93black_tree 转:红黑树(五)之 Java的实现 总结的比较精炼的: http://www.cnb ...

  3. Java集合详解6:这次,从头到尾带你解读Java中的红黑树

    <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...

  4. 红黑树(二)之 C语言的实现

    概要 红黑树在日常的使用中比较常用,例如Java的TreeMap和TreeSet,C++的STL,以及Linux内核中都有用到.之前写过一篇文章专门介绍红黑树的理论知识,本文将给出红黑数的C语言的实现 ...

  5. 红黑树(三)之 Linux内核中红黑树的经典实现

    概要 前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树.本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证.若读者对红黑树的理论知识不熟悉,建立先学习红黑树 ...

  6. 红黑树(四)之 C++的实现

    概要 前面分别介绍红黑树的理论知识和红黑树的C语言实现.本章是红黑树的C++实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章. 目录1. 红黑树的介绍2. 红黑树的C++ ...

  7. 从2-3-4树到红黑树(下) Java与C的实现

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处   http://www.cnblogs.com/nullzx/ 相关博客: 从2-3-4树到红黑树(上) 从2-3-4树到红黑树(中) 1. 实现技 ...

  8. 简单聊聊红黑树(Red Black Tree)

    ​ 前言 众所周知,红黑树是非常经典,也很非常重要的数据结构,自从1972年被发明以来,因为其稳定高效的特性,40多年的时间里,红黑树一直应用在许多系统组件和基础类库中,默默无闻的为我们提供服务,身边 ...

  9. java随笔——HashMap与红黑树

    前言: hashmap是一种很常用的数据结构,其使用方便快捷,接下来笔者将给大家深入解析这个数据结构,让大家能在用的时候知其然,也知其所以然. 一.Map 首先,从最基本的讲起,我们先来认识一下map ...

随机推荐

  1. java函数的笔记

    java中,函数即方法.也就是实现某个功能的办法. 函数的格式 修饰符 返回值类型 函数名(参数类型 参数) { 逻辑处理; return 处理结果; // return关键字是用于结束该函数的,并将 ...

  2. beanFactoory介绍

  3. Laravel_Elixir_gulp任务利器安装

    目录 说明 安装 1安装gulp 2安装Elixir 3Elixir快速入门 4合并cssjs 5版本控制version 6复制copy 7方法串联 1.说明 详细说明暂时省略,后期补充.小白的角度理 ...

  4. hdu 1159 Palindrome(回文串) 动态规划

    题意:输入一个字符串,至少插入几个字符可以变成回文串(左右对称的字符串) 分析:f[x][y]代表x与y个字符间至少插入f[x][y]个字符可以变成回文串,可以利用动态规划的思想,求解 状态转化方程: ...

  5. (转)iOS Wow体验 - 第八章 - 易用性与自动化技术

    本文是<iOS Wow Factor:Apps and UX Design Techniques for iPhone and iPad>第八章译文精选,也是全书译文的最后一篇.上一篇:W ...

  6. CSS注意事项

    1.定义样式不能就加:隔开 当有定义的css样式并没有起作用的时候看看定义该样式前边有没有加“;”的如 p{};div{}

  7. JDK 安装过程

    1.首先是下载jdk:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 2.下载完 ...

  8. 使用IDEA搭建Spring Boot入门项目

    简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置 ...

  9. linux中 probe函数的何时调用的?

    点击打开链接 linux中 probe函数何时调用的 所以的驱动教程上都说:只有设备和驱动的名字匹配,BUS就会调用驱动的probe函数,但是有时我们要看看probe函数里面到底做了什么,还有传递给p ...

  10. kettle的输入输出组件和脚本组件

    一. 输入组件 1.1表输入 从指定的数据库中,通过sql语句来查询数据加载到内存. 允许简易转换:勾选后可以避免不必要的字段的数据类型转换,从而提高性能. 替换sql语句里的变量:勾选后可以通过${ ...