COJ966 WZJ的数据结构(负三十四)
| WZJ的数据结构(负三十四) | 
| 难度级别:C; 运行时间限制:20000ms; 运行空间限制:262144KB; 代码长度限制:2000000B | 
| 
 试题描述 
 | 
| 
 给一棵n个节点的树,请对于形如"u r"的Q个询问, 回答以 u 节点为中心,半径 r 以内的节点中,权值最大的节点的编号是多少。如果有多个节点,返回编号最小的。 
 | 
| 
 输入 
 | 
| 
 共有一组测试数据。 
第一行包含一个整数 n (1 ≤ n ≤ 10^5),表示节点总数。 接下来的一行,包含 n 个数字,表示每个节点的权值 vi (1 ≤ vi ≤ 10^6)。 接下来的 n-1 行,每行三个整数 (ai, bi, wi),表示一条连接 ai, bi 节点的边,边长为 wi(1 ≤ ai, bi ≤ n, 1 ≤ wi ≤ 3)。 接下来的一行包含一个整数 q,表示询问总数(1 ≤ q ≤ 10^5)。 接下来 q 行,每行包含两个整数 u, r(1 ≤ u ≤ n, 0 ≤ r ≤300),表示询问以 u 节点为中心,半径 r 以内的节点中,权值最大的节点的编号是多少。如果有多解返回编号最小的。  | 
| 
 输出 
 | 
| 
 对于每组询问,输出一行表示对应答案。 
 | 
| 
 输入示例 
 | 
| 
 7 
1 2 3 4 5 6 7 1 2 1 2 3 1 2 4 1 1 5 1 5 6 1 5 7 1 4 1 1 1 2 2 1 2 2  | 
| 
 输出示例 
 | 
| 
 5 
7 4 5  | 
| 
 其他说明 
 | 
| 
 样例很邪恶哦。 
 | 
考虑用点分治离线来解决这道题,那么问题转换成怎么解决过重心x的询问Max(val[y]|depx+depy<=r)。
我们可以用往常的做法,维护dep、val同时递增的决策序列,这个可以用平衡树来做,然后正反扫一遍。
但其实没有必要,注意x、y在同一棵子树并不会影响答案(想一想,为什么),所以只需离线构出决策序列然后二分就行了。
#include<cstdio>
#include<cctype>
#include<queue>
#include<stack>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
int first[maxn],next[maxn<<],to[maxn<<],dis[maxn<<],e;
void AddEdge(int w,int v,int u) {
to[++e]=v;dis[e]=w;next[e]=first[u];first[u]=e;
to[++e]=u;dis[e]=w;next[e]=first[v];first[v]=e;
}
int n,q,val[maxn],ans[maxn];
int better(int x,int y) {
if(val[x]<val[y]||(val[x]==val[y]&&x>y)) return ;
return ;
}
void relax(int& x,int y) {if(better(y,x)) x=y;}
struct Query {
int x,r,id,next;
}Q[maxn];
int first2[maxn],cnt;
void AddQuery(int id,int r,int x) {
Q[++cnt]=(Query){x,r,id,first2[x]};first2[x]=cnt;
}
int vis[maxn],f[maxn],s[maxn],size,root;
void getroot(int x,int fa) {
s[x]=;int maxs=;
ren if(to[i]!=fa&&!vis[to[i]]) {
getroot(to[i],x);
s[x]+=s[to[i]];maxs=max(maxs,s[to[i]]);
}
f[x]=max(maxs,size-s[x]);
if(f[root]>f[x]) root=x;
}
int tot,num[maxn],dep[maxn],id[maxn],A[maxn],B[maxn];
void dfs(int x,int fa,int D) {
num[++tot]=x;dep[tot]=D;
ren if(to[i]!=fa&&!vis[to[i]]) dfs(to[i],x,D+dis[i]);
}
int cmp(int x,int y) {return dep[x]<dep[y]||(dep[x]==dep[y]&&val[num[x]]>val[num[y]]);}
void solve(int x) {
vis[x]=;tot=;dfs(x,,);
rep(i,,tot) id[i]=i;
sort(id+,id+tot+,cmp);
int tmp=tot;tot=;
rep(i,,tmp) if(better(num[id[i]],A[tot])) A[++tot]=num[id[i]],B[tot]=dep[id[i]];
rep(i,,tmp) for(int j=first2[num[i]];j;j=Q[j].next) {
int l=,r=tot+;
while(l+<r) {
int mid=l+r>>;
if(B[mid]<=Q[j].r-dep[i]) l=mid;
else r=mid;
}
if(B[l]<=Q[j].r-dep[i]) relax(ans[Q[j].id],A[l]);
}
ren if(!vis[to[i]]) {
size=f[]=s[to[i]];getroot(to[i],root=);
solve(root);
}
}
int main() {
n=read();
rep(i,,n) val[i]=read();
rep(i,,n) AddEdge(read(),read(),read());
q=read();
rep(i,,q) AddQuery(i,read(),read());
size=f[]=n;getroot(,);
solve(root);
rep(i,,q) printf("%d\n",ans[i]);
return ;
}
COJ966 WZJ的数据结构(负三十四)的更多相关文章
- 数据结构(三十四)最短路径(Dijkstra、Floyd)
		
一.最短路径的定义 在网图和非网图中,最短路径的含义是不同的.由于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径:而对于网图来说,最短路径是指两顶点之间经过的边上权值之 ...
 - COJ970 WZJ的数据结构(负三十)
		
WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...
 - COJ968 WZJ的数据结构(负三十二)
		
WZJ的数据结构(负三十二) 难度级别:D: 运行时间限制:5000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,边上均有权值,每个点上有 ...
 - COJ 0970 WZJ的数据结构(负三十)树分治
		
WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...
 - [COJ0968]WZJ的数据结构(负三十二)
		
[COJ0968]WZJ的数据结构(负三十二) 试题描述 给你一棵N个点的无根树,边上均有权值,每个点上有一盏灯,初始均亮着.请你设计一个数据结构,回答M次操作. 1 x:将节点x上的灯拉一次,即亮变 ...
 - [COJ0970]WZJ的数据结构(负三十)
		
[COJ0970]WZJ的数据结构(负三十) 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计一个数据结构,回答M次操作. 1 x v:对于树上的每一个节点y,如果将x.y在树上的距离记为 ...
 - 孤荷凌寒自学python第三十四天python的文件操作对file类的对象学习
		
孤荷凌寒自学python第三十四天python的文件操作对file类的对象学习 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 一.close() 当一个file对象执行此方法时,将关闭当前 ...
 - NeHe OpenGL教程 第三十四课:地形
		
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
 - COJ 1003 WZJ的数据结构(三)ST表
		
WZJ的数据结构(三) 难度级别:B: 运行时间限制:3000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,完成以下功能: 给定一个大小为N的 ...
 
随机推荐
- A PHP extension for Facebook's RocksDB
			
A PHP extension for Facebook's RocksDB 31 commits 2 branches 0 releases 2 contributors C++ 90.5% C 8 ...
 - Android 向Application对象添加Activity监听
			
可以建立对象把Application.ActivityLifecycleCallbacks接口中的函数实现,并利用public void registerActivityLifecycleCallba ...
 - 【JAVA、C++】LeetCode 021 Merge Two Sorted Lists
			
Merge two sorted linked lists and return it as a new list. The new list should be made by splicing ...
 - HDU 1452  Happy 2004 (逆元+快速幂+积性函数)
			
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
 - iOS通过设置info.plist参数使用iTunes导入导出Documents目录下的文件
			
参考网址: http://my.oschina.net/hmj/blog/112592 http://www.cnblogs.com/taintain1984/archive/2013/05/27/3 ...
 - MFC 相关文件夹、文件操作
			
//关于文件(夹)操作,可以参考下SHFileOperation这个外壳函数,貌似可以显示进度条.以下没有使用SHFileOperation//删除一个文件夹下的所有内容void myDeleteDi ...
 - [Android Pro]    通过IMSI判断手机是移动、联通、电信
			
TelephonyManager telManager = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE); /** 获取 ...
 - OGNL表达式struts2标签“%,#,$”
			
一.什么是OGNL,有什么特点? OGNL(Object-Graph Navigation Language),大概可以理解为:对象图形化导航语言.是一种可以方便地操作对象属性的开源表达式语言.OGN ...
 - MySQL auto-extending data file
			
http://blog.csdn.net/hw_libo/article/details/39215723 http://blog.sina.com.cn/s/blog_5037eacb0102vjm ...
 - 《Effective Java》笔记 使类和成员的可访问性最小化
			
类和接口 第13条 使类和成员的可访问性最小化 1.设计良好的模块会隐藏所有的实现细节,把它的API与实现清晰的隔离开来,模块之间只通过它们的API进行通信,一个模块不需要知道其他模块的内部工作情况: ...