WZJ的数据结构(负三十四)
难度级别:C; 运行时间限制:20000ms; 运行空间限制:262144KB; 代码长度限制:2000000B
试题描述
给一棵n个节点的树,请对于形如"u r"的Q个询问, 回答以 u 节点为中心,半径 r 以内的节点中,权值最大的节点的编号是多少。如果有多个节点,返回编号最小的。
输入
共有一组测试数据。
第一行包含一个整数 n (1 ≤ n ≤ 10^5),表示节点总数。
接下来的一行,包含 n 个数字,表示每个节点的权值 vi (1 ≤ vi ≤ 10^6)。 接下来的 n-1 行,每行三个整数 (ai, bi, wi),表示一条连接 ai, bi 节点的边,边长为 wi(1 ≤ ai, bi ≤ n, 1 ≤ wi ≤ 3)。
接下来的一行包含一个整数 q,表示询问总数(1 ≤ q ≤ 10^5)。 接下来 q 行,每行包含两个整数 u, r(1 ≤ u ≤ n, 0 ≤ r ≤300),表示询问以 u 节点为中心,半径 r 以内的节点中,权值最大的节点的编号是多少。如果有多解返回编号最小的。
输出
对于每组询问,输出一行表示对应答案。
输入示例
7
1 2 3 4 5 6 7
1 2 1
2 3 1
2 4 1
1 5 1
5 6 1
5 7 1
4
1 1
1 2
2 1
2 2
输出示例
5
7
4
5
其他说明
样例很邪恶哦。

考虑用点分治离线来解决这道题,那么问题转换成怎么解决过重心x的询问Max(val[y]|depx+depy<=r)。

我们可以用往常的做法,维护dep、val同时递增的决策序列,这个可以用平衡树来做,然后正反扫一遍。

但其实没有必要,注意x、y在同一棵子树并不会影响答案(想一想,为什么),所以只需离线构出决策序列然后二分就行了。

#include<cstdio>
#include<cctype>
#include<queue>
#include<stack>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
int first[maxn],next[maxn<<],to[maxn<<],dis[maxn<<],e;
void AddEdge(int w,int v,int u) {
to[++e]=v;dis[e]=w;next[e]=first[u];first[u]=e;
to[++e]=u;dis[e]=w;next[e]=first[v];first[v]=e;
}
int n,q,val[maxn],ans[maxn];
int better(int x,int y) {
if(val[x]<val[y]||(val[x]==val[y]&&x>y)) return ;
return ;
}
void relax(int& x,int y) {if(better(y,x)) x=y;}
struct Query {
int x,r,id,next;
}Q[maxn];
int first2[maxn],cnt;
void AddQuery(int id,int r,int x) {
Q[++cnt]=(Query){x,r,id,first2[x]};first2[x]=cnt;
}
int vis[maxn],f[maxn],s[maxn],size,root;
void getroot(int x,int fa) {
s[x]=;int maxs=;
ren if(to[i]!=fa&&!vis[to[i]]) {
getroot(to[i],x);
s[x]+=s[to[i]];maxs=max(maxs,s[to[i]]);
}
f[x]=max(maxs,size-s[x]);
if(f[root]>f[x]) root=x;
}
int tot,num[maxn],dep[maxn],id[maxn],A[maxn],B[maxn];
void dfs(int x,int fa,int D) {
num[++tot]=x;dep[tot]=D;
ren if(to[i]!=fa&&!vis[to[i]]) dfs(to[i],x,D+dis[i]);
}
int cmp(int x,int y) {return dep[x]<dep[y]||(dep[x]==dep[y]&&val[num[x]]>val[num[y]]);}
void solve(int x) {
vis[x]=;tot=;dfs(x,,);
rep(i,,tot) id[i]=i;
sort(id+,id+tot+,cmp);
int tmp=tot;tot=;
rep(i,,tmp) if(better(num[id[i]],A[tot])) A[++tot]=num[id[i]],B[tot]=dep[id[i]];
rep(i,,tmp) for(int j=first2[num[i]];j;j=Q[j].next) {
int l=,r=tot+;
while(l+<r) {
int mid=l+r>>;
if(B[mid]<=Q[j].r-dep[i]) l=mid;
else r=mid;
}
if(B[l]<=Q[j].r-dep[i]) relax(ans[Q[j].id],A[l]);
}
ren if(!vis[to[i]]) {
size=f[]=s[to[i]];getroot(to[i],root=);
solve(root);
}
}
int main() {
n=read();
rep(i,,n) val[i]=read();
rep(i,,n) AddEdge(read(),read(),read());
q=read();
rep(i,,q) AddQuery(i,read(),read());
size=f[]=n;getroot(,);
solve(root);
rep(i,,q) printf("%d\n",ans[i]);
return ;
}

COJ966 WZJ的数据结构(负三十四)的更多相关文章

  1. 数据结构(三十四)最短路径(Dijkstra、Floyd)

    一.最短路径的定义 在网图和非网图中,最短路径的含义是不同的.由于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径:而对于网图来说,最短路径是指两顶点之间经过的边上权值之 ...

  2. COJ970 WZJ的数据结构(负三十)

    WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...

  3. COJ968 WZJ的数据结构(负三十二)

    WZJ的数据结构(负三十二) 难度级别:D: 运行时间限制:5000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,边上均有权值,每个点上有 ...

  4. COJ 0970 WZJ的数据结构(负三十)树分治

    WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...

  5. [COJ0968]WZJ的数据结构(负三十二)

    [COJ0968]WZJ的数据结构(负三十二) 试题描述 给你一棵N个点的无根树,边上均有权值,每个点上有一盏灯,初始均亮着.请你设计一个数据结构,回答M次操作. 1 x:将节点x上的灯拉一次,即亮变 ...

  6. [COJ0970]WZJ的数据结构(负三十)

    [COJ0970]WZJ的数据结构(负三十) 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计一个数据结构,回答M次操作. 1 x v:对于树上的每一个节点y,如果将x.y在树上的距离记为 ...

  7. 孤荷凌寒自学python第三十四天python的文件操作对file类的对象学习

     孤荷凌寒自学python第三十四天python的文件操作对file类的对象学习 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 一.close() 当一个file对象执行此方法时,将关闭当前 ...

  8. NeHe OpenGL教程 第三十四课:地形

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  9. COJ 1003 WZJ的数据结构(三)ST表

    WZJ的数据结构(三) 难度级别:B: 运行时间限制:3000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,完成以下功能: 给定一个大小为N的 ...

随机推荐

  1. 【云计算】Kubernetes、Marathon等框架需要解决什么样的问题?

    闲谈Kubernetes 的主要特性和经验分享       Capitalonline全球云主机.全球私有网络,免费试用进行时 »   主要介绍 Kubernetes 的主要特性和一些经验.先从整体上 ...

  2. Android 中的Force Close

    今天写程序时遇到一个问题,领导希望在点击了setting里的force close 后,程序依然能够响应以前用alarmManager注册的receiver. 在网上看到了一些文章,写的是如何建立一个 ...

  3. Java入门的程序汇总

    Java入门的基础程序,虽然很简单,也要多练习,下面有重点的总结一下 1.HelloWorld这个不说了 2.常量与变量部分 基本数据类型使用 public class Javashujuleixin ...

  4. Java for LeetCode 147 Insertion Sort List

    Sort a linked list using insertion sort. 解题思路: 插入排序,JAVA实现如下: public ListNode insertionSortList(List ...

  5. codeforces 479B Towers 解题报告

    题目链接:http://codeforces.com/problemset/problem/479/B 题目意思:有 n 座塔,第 i 座塔有 ai 个cubes在上面.规定每一次操作是从最多 cub ...

  6. FZU 2148 moon game (计算几何判断凸包)

    Moon Game Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  7. osg 中鼠标拾取线段的端点和中点

    //NeartestPointNodeVisitor.h #pragma once #include <osg\Matrix> #include <vector> #inclu ...

  8. iphone越狱还原

    在Cydia 里安装Impactor 就行了 .在操作时需要全程联网: .请至少保证 % 的电量以防止在恢复过程出现断电的情况(建议将设备连接至电源): .设备将恢复至出厂状态,所有用户数据都将被清除 ...

  9. opencv学习笔记(五)镜像对称

    opencv学习笔记(五)镜像对称 设图像的宽度为width,长度为height.(x,y)为变换后的坐标,(x0,y0)为原图像的坐标. 水平镜像变换: 代码实现: #include <ios ...

  10. 【读书笔记】读《JavaScript设计模式》之适配器模式

    一.定义 适配器模式可用来在现有接口和不兼容的类之间进行匹配.使用这种模式的对象又叫包装器(wrapper),因为它们是在用一个新的接口包装另一个对象.在设计类的时候旺旺会遇到有些接口不能与现有API ...