【LeetCode】338. Counting Bits (2 solutions)
Counting Bits
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Credits:
Special thanks to @ syedeefor adding this problem and creating all test cases.
解法一:
按照定义做,注意,x&(x-1)可以消去最右边的1
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ret;
for(int i = ; i <= num; i ++)
ret.push_back(countbit(i));
return ret;
}
int countbit(int i)
{
int count = ;
while(i)
{
i &= (i-);
count ++;
}
return count;
}
};

解法二:
对于[2^k, 2^(k+1)-1]区间,可以划分成前后两部分
前半部分与[2^(k-1), 2^k-1]内的值相同,后半部分与[2^(k-1), 2^k-1]内值+1相同。
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ret;
ret.push_back();
if(num == )
// start case 1
return ret;
ret.push_back();
if(num == )
// start case 2
return ret;
// general case
else
{
int k = ;
int result = ;
while(result- < num)
{
result *= ;
k ++;
}
// to here, num∈ [2^(k-1),2^k-1]
int gap = pow(2.0, k) - - num;
for(int i = ; i < k-; i ++)
{// infer from [2^i, 2^(i+1)-1] to [2^(i+1), 2^(i+2)-1]
// copy part
for(int j = pow(2.0, i); j <= pow(2.0, i+)-; j ++)
ret.push_back(ret[j]);
// plus 1 part
for(int j = pow(2.0, i); j <= pow(2.0, i+)-; j ++)
ret.push_back(ret[j]+);
}
for(int i = ; i < pow(2.0, k-) - gap; i ++)
{
int j = pow(2.0, k-) + i;
if(i < pow(2.0, k-))
// copy part
ret.push_back(ret[j]);
else
// plus 1 part
ret.push_back(ret[j]+);
}
}
return ret;
}
};

【LeetCode】338. Counting Bits (2 solutions)的更多相关文章
- 【leetcode】338 .Counting Bits
原题 Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate t ...
- 【LeetCode】338. Counting Bits 解题报告(Python & Java & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目描述 Given a non negati ...
- 【LeetCode】75. Sort Colors (3 solutions)
Sort Colors Given an array with n objects colored red, white or blue, sort them so that objects of t ...
- 【LeetCode】90. Subsets II (2 solutions)
Subsets II Given a collection of integers that might contain duplicates, S, return all possible subs ...
- 【LeetCode】190. Reverse Bits 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 二进制字符串翻转 位运算 日期 题目地址:https://le ...
- 【LeetCode】190. Reverse Bits
题目: Reverse bits of a given 32 bits unsigned integer. For example, given input 43261596 (represented ...
- 【Leetcode】338. Bit位计数
每次刷leetcode都有一种发现新大陆的感觉. 题目链接:https://leetcode-cn.com/problems/counting-bits/description/ 给定一个非负整数 n ...
- 【LeetCode】44. Wildcard Matching (2 solutions)
Wildcard Matching Implement wildcard pattern matching with support for '?' and '*'. '?' Matches any ...
- 【LeetCode】130. Surrounded Regions (2 solutions)
Surrounded Regions Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A ...
随机推荐
- Ubuntu下制作ISO文件
利用Ubuntu自带的命令mkisofs就可以制作iso文件,具体方法如下: 1. 如果你是直接从cd压制iso文件的,执行 sudo umount /dev/cdromdd if=/dev/cd ...
- (01背包 当容量特别大的时候) Knapsack problem (fzu 2214)
http://acm.fzu.edu.cn/problem.php?pid=2214 Problem Description Given a set of n items, each with a ...
- android tcp协议主要函数
1 tcp_timers: 处理各种timer超时信息,关键函数tcp_xmit_timer 2 tcp_iutput: 3 tcp_output:接收方的接收窗口struct tcpcb.snd_w ...
- nginx事件模块分析(一)
nginx ngx_events_module模块分析 ngx_events_module模块是核心模块之一,它是其它所有事件模块的代理模块.nginx在启动时只与events模块打交道,而由even ...
- 【Python自动化运维之路Day9】Socket
socket也可以认为是套接字是一种源IP地址和目的IP地址以及源端口号和目的端口号的组合.网络化的应用程序在开始任何通讯之前都必须要创建套接字.就像电话的插口一样,没有它就没办法通讯. socket ...
- Orchard SQLite v1.7.2
1. Upgrade NHibernate to v3.3.3 2. Add lib csharp-sqlite to support SQLite 3. Replace oracle client ...
- PostgreSQL学习记录-- 2016-03-11
1.日期字段 “年月日” 使用 date “年月日 时分秒” 使用 timestamp without time zone 2.布尔字段 使用 boolean 3.字符字段 使用 character ...
- C#设计模式(5)——建造者模式(Builder Pattern)
一.引言 在软件系统中,有时需要创建一个复杂对象,并且这个复杂对象由其各部分子对象通过一定的步骤组合而成.例如一个采购系统中,如果需要采购员去采购一批电脑时,在这个实际需求中,电脑就是一个复杂的对象, ...
- addin 笔记
http://msdn.microsoft.com/en-us/library/vstudio/19dax6cz.aspx VS 加载插件的位置: \My Documents\Visual Studi ...
- 【Android 】Service 全面总结
1.Service的种类 按运行地点分类: 类别 区别 优点 缺点 应用 本地服务(Local) 该服务依附在主进程上, 服务依附在主进程上而不是独立的进程,这样在一定程度上节约了资源,另外L ...