PSOIndividual.py

 import numpy as np
import ObjFunction
import copy class PSOIndividual: '''
individual of PSO
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0. def generate(self):
'''
generate a rondom chromsome
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
self.velocity = np.random.random(size=len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i]
self.bestPosition = np.zeros(len)
self.bestFitness = 0. def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

PSO.py

 import numpy as np
from PSOIndividual import PSOIndividual
import random
import copy
import matplotlib.pyplot as plt class ParticleSwarmOptimization: '''
the class for Particle Swarm Optimization
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[w, c1, c2]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of pso
'''
for i in xrange(0, self.sizepop):
ind = PSOIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness
if self.population[i].fitness > self.population[i].bestFitness:
self.population[i].bestFitness = self.population[i].fitness
self.population[i].bestIndex = copy.deepcopy(
self.population[i].chrom) def update(self):
'''
update the population of pso
'''
for i in xrange(0, self.sizepop):
self.population[i].velocity = self.params[0] * self.population[i].velocity + self.params[1] * np.random.random(self.vardim) * (
self.population[i].bestPosition - self.population[i].chrom) + self.params[2] * np.random.random(self.vardim) * (self.best.chrom - self.population[i].chrom)
self.population[i].chrom = self.population[
i].chrom + self.population[i].velocity def solve(self):
'''
the evolution process of the pso algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while self.t < self.MAXGEN - 1:
self.t += 1
self.update()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " % self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def printResult(self):
'''
plot the result of pso algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Particle Swarm Optimization algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
pso = PSO(60, 25, bound, 1000, [0.7298, 1.4962, 1.4962])
pso.solve()

ObjFunction见简单遗传算法-python实现

粒子群优化算法-python实现的更多相关文章

  1. [Algorithm] 群体智能优化算法之粒子群优化算法

    同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...

  2. 粒子群优化算法PSO及matlab实现

    算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...

  3. MATLAB粒子群优化算法(PSO)

    MATLAB粒子群优化算法(PSO) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.介绍 粒子群优化算法(Particle Swarm Optim ...

  4. ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)

    ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...

  5. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

  6. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...

  7. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...

  8. 粒子群优化算法对BP神经网络优化 Matlab实现

    1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作 ...

  9. 数值计算:粒子群优化算法(PSO)

    PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...

随机推荐

  1. [转]比较Jmeter、Grinder和JAVA多线程本身压力测试所带来的性能开销

    1. 测试环境 jmeter版本 :jmeter 2.4 grinder的版本 : Grinder 3 JAVA的版本:JDK 1.6 2. 测试代码 Jmeter测试代码 public class  ...

  2. DataGridView 行、列的隐藏和删除

    ) 行.列的隐藏 [VB.NET] ' DataGridView1的第一列隐藏 DataGridView1.Columns(0).Visible = False ' DataGridView1的第一行 ...

  3. 护眼色的RGB值

    网上流行护眼色的RGB值和颜色代码 在搜索引擎搜“护眼色”,就会搜出一堆关于保护眼睛的屏幕颜色文章,说的统统是一种颜色,有点像绿豆沙的颜色.方法就是在屏幕设置里, 色调:85:饱和度:123:亮度:2 ...

  4. vue中如何不通过路由直接获取url中的参数

    前言:为什么要不通过路由直接获取url中的参数? vue中使用路由的方式设置url参数,但是这种方式必须要在路径中附带参数,而且这个参数是需要在vue的路由中提前设置好的. 相对来说,在某些情况下直接 ...

  5. Jsp页显示时间标签JSTL标签 <fmt:formatDate/> 实例大全

    <fmt:formatDate value="${isoDate}" type="both"/>2004-5-31 23:59:59 <fmt ...

  6. Web Storage中的sessionStorage和localStorage

    html5中的Web Storage包括了两种存储方式:sessionStorage和localStorage. sessionStorage用于本地存储一个会话(session)中的数据,这些数据只 ...

  7. 认识实验室信息管理系统(LIMS)

    在当今互联网如日中天的大环境下,各种伴随着互联网的产物如p2p,o2o在如火如荼的进行着,吸引了大量的开发人员都涌向了这个行业,所有的技术似乎都在围绕着互联网发展,传统行业软件开发的人气和关注度就相形 ...

  8. nodejs 针对 mysql 设计的原型库,支持事务/共享多次/单次查询

    //通过this访问内置流程对象, 在每个流程中都能使用 //this.conn => mysql-connection //this.results => 整个流程数已经返回的值 //t ...

  9. 矩形覆盖-我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

    class Solution { public: int rectCover(int number) { ; ; ; ||number==) ; ) ; ;i<number+;i++){ res ...

  10. SignalR 实现web浏览器客户端与服务端的推送功能

    SignalR 是一个集成的客户端与服务器库,基于浏览器的客户端和基于 ASP.NET 的服务器组件可以借助它来进行双向多步对话. 换句话说,该对话可不受限制地进行单个无状态请求/响应数据交换:它将继 ...