Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

题意:

起点分别为x,y,一次分别往前跳m,n米,前进的路是环形,长度为L,求跳几次后重合,或不可能重合。

分析:

重合时跳了t次,可得(x+mt)%L=(y+nt)%L

因此x-y+(m-n)t=kL (其中k为一个整数)即 

     Lk+(n-m)t=x-y

形式上和 ax+       by=c     相同

这个式子里L、n-m、x-y分别为系数a、b、c,未知量k和t为方程的x和y,因此只要求解不定方程ax+by=c的y的最小正整数解即可。

接下来要用到扩展欧几里德算法解同余线性方程。

求出ax+by=c的一个解后,y可能小于0,而通解是x=x0+b/gcd(a,b),y=y0+a/gcd(a,b);

d=gcd(a,b);最小正整数的y=(y0%(a/d)+a/d)%(a/d)

这个的理解可以举个例子:y0=-12,a/d=8,y1=y+8=-4,y2=y0+2*8=4,y2为y的最小正整数解,y2=(y0%8+8)%8=4%8=4。

代码:

 //直接模拟TLE,要用扩展欧几里德求解同余线性方程,ヽ(≧Д≦)ノ
#include<stdio.h>
#define ll long long
ll x,y,m,n,l,t,p,q;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==){x=;y=;return a;}
ll r=exgcd(b,a%b,x,y);
ll tmp=x;x=y;y=tmp-a/b*y;
return r;
}
void modular_linear_equation(ll a,ll b,ll c)
{
ll x,y,d=exgcd(a,b,x,y);
if(c%d)printf("Impossible\n");
else printf("%lld",((y*c/d)%(a/d)+a/d)%(a/d));
}
int main()
{
scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
modular_linear_equation(l,n-m,x-y);
return ;
}

【POJ 1061】青蛙的约会的更多相关文章

  1. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  2. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  3. POJ.1061 青蛙的约会 (拓展欧几里得)

    POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...

  4. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  5. POJ 1061青蛙的约会(拓展欧几里德算法)

    题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...

  6. POJ 1061 青蛙的约会

                            青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 82859   A ...

  7. poj 1061青蛙的约会

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 90083   Accepted: 16257 Descripti ...

  8. POJ 1061 青蛙的约会 扩展欧几里德--解不定方程

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 81606   Accepted: 14116 Descripti ...

  9. POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Descript ...

  10. poj 1061 青蛙的约会 扩展欧几里德

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K       Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们 ...

随机推荐

  1. HDU 4041 Eliminate Witches! --模拟

    题意: 给一个字符串,表示一颗树,要求你把它整理出来,节点从1开始编号,还要输出树边. 解法: 模拟即可.因为由括号,所以可以递归地求,用map存对应关系,np存ind->name的映射,每进入 ...

  2. 2014 Super Training #3 H Tmutarakan Exams --容斥原理

    原题: URAL 1091  http://acm.timus.ru/problem.aspx?space=1&num=1091 题意:要求找出K个不同的数字使他们有一个大于1的公约数,且所有 ...

  3. UESTC 1237 质因子分解

    水题一枚.. #include<iostream> #include<cstdio> #include<cstring> #include<cmath> ...

  4. Unity3D MainCamera和NGUI UICamera的小插曲

    集成NGUI 在实际的项目中,经常会使用NGUI来制作UI,用Main Camera来表现3D,但是NGUI的Camer的投射是正交视图而非透视,它绑定UICamer的脚本而且它的Tag默认是Unta ...

  5. vue中如何不通过路由直接获取url中的参数

    前言:为什么要不通过路由直接获取url中的参数? vue中使用路由的方式设置url参数,但是这种方式必须要在路径中附带参数,而且这个参数是需要在vue的路由中提前设置好的. 相对来说,在某些情况下直接 ...

  6. 一些MEL命令

    这几天写maya脚本,发现一些新命令:   动画命令 cutKey 剪切某段动画曲线 simplify 简化某段曲线   基本命令 getAttr -size 数组属性名    获得数组属性的元素个数 ...

  7. 高性能网站性能优化与系统架构(ZT)

    转载请保留出处:俊麟 Michael’s blog (http://space.itpub.net/7311285/viewspace-97) 我在CERNET做过拨号接入平台的搭建,而后在Yahoo ...

  8. Qt——信号槽连接:基于字符串与基于函数的连接之间的不同

    从Qt5.0开始,Qt提供了两种不同的方式进行信号槽的连接:基于 字符串 的连接语法.基于 函数 的连接语法.这两种语法各有利弊,下面对它们的不同点进行总结. 以下几部分详细解释了它们之间的不同,并说 ...

  9. 我们为什么需要DTO?

    看了几套源码,其中都有用到DTO,这篇文章主要来谈论一下DTO使用的场合及其带来的好处. 在传统的编程中,我们一般都是前台请求数据,发送到Webservice,然后WebService向数据库发出请求 ...

  10. 动态执行SQL语句

    在实际制作过程中,需要动态的拼接SQL语句然后执行.具体代码如下: declare @columnName varchar(20),@tempName varchar(20) select @temp ...