【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)
1007: [HNOI2008]水平可见直线
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 2605 Solved: 914
[Submit][Status]
Description

Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
HINT
Source
分析:本蒟残还是太弱,只能膜拜题解:
以下摘自wyl大神的空间:http://hi.baidu.com/wyl8899/item/061d3b0de2c42b344bc4a362
正解是按斜率排序,用栈维护可见直线。
如右图,当前考虑直线now,栈顶top,栈顶的下一个元素top'大致的位置。
显然now和top'将把top完全遮盖。
思考一下可以得出,记两直线交点的横坐标为x(A,B),则x(now,top)<=x(top,top')时,栈顶直线被废,弹出栈。
反复这样操作,直至不满足上面的条件,将当前直线压入栈中。
最后在栈中的直线就是答案。
对了,同斜率的直线,显然只考虑截距最大的那个就好了,因此要处理一下(当然不处理的话x(now,top)的计算过程中要divided by 0)
总结:一般情况下处理多条直线的问题都是将它们按照斜率排序(我发现很多直线题这一步都是基础),而且之后就能用单调性维护(这个也经常见到,比如斜率优化dp里面就是用单调队列,本题用单调栈)
code:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=;
struct wjmzbmr
{
int k,b,w;
bool operator < (const wjmzbmr& x) const
{
return (k<x.k)||((k==x.k)&&(b>x.b));
}
}a[maxn+];
wjmzbmr c[maxn+];
int n,stack[maxn+],b[maxn+];
bool f[maxn+];
bool pd(int now,int top,int ltop)
{
double x1=(double)(c[top].b-c[now].b)/(double)(c[now].k-c[top].k);
double x2=(double)(c[top].b-c[ltop].b)/(double)(c[ltop].k-c[top].k);
if(x2-x1>=0.0) return true;else return false;
}
int main()
{
freopen("ce.in","r",stdin);
freopen("ce.out","w",stdout);
scanf("%d",&n);
for(int i=;i<n;++i)
{
scanf("%d%d",&a[i].k,&a[i].b);
a[i].w=i;
c[i]=a[i];
}
sort(a,a+n);
int size=;b[size]=a[].w;
for(int i=;i<n;++i) if(a[i].k!=a[i-].k) b[++size]=a[i].w;
int len=;
memset(stack,,sizeof(stack));
stack[]=b[],stack[]=b[];
for(int i=;i<=size;++i)
{
while(len>=&&pd(b[i],stack[len],stack[len-])) --len;
stack[++len]=b[i];
}
memset(f,,sizeof(f));
for(int i=;i<=len;++i) f[stack[i]]=;
for(int i=;i<n;++i) if(f[i]==) printf("%d ",i+);
return ;
}
【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)的更多相关文章
- 【bzoj1007】[HNOI2008]水平可见直线 半平面交/单调栈
题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...
- BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)
题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l ...
- [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
随机推荐
- Linux学习之一——开机必备知识
linux最重要的特色是指令交互,利用一个个指令来进行各种操作.当然可以用X Window获得友好的linux窗口,但是还是有很多局限性. linux用户登录后默认进入 /root目录下. 比较重要的 ...
- Linux 下子线程 exit code 在主线程中的使用
Linux线程函数原型是这样的: void* thread_fun(void* arg) 它的返回值是 空类型指针,入口参数也是 空类型指针.那么线程的 exit code 也应该是 void * 类 ...
- Hibernate占位符?和:及JPA
小结一下hibernate占位符. 1.最常见的?占位符. String hql = "select a from Apple a where a.color=? a.weight>? ...
- NOIP2008 普及组T1 ISBN号码 解题报告-S.B.S.
题目描述 每一本正式出版的图书都有一个ISBN号码与之对应,ISBN码包括9位数字.1位识别码和3位分隔符,其规定格式如“x-xxx-xxxxx-x”,其中符号“-”就是分隔符(键盘上的减号),最后一 ...
- JavaScript测试工具
大家都知道Javascript的测试比较麻烦,一般是开发使用一些浏览器的插件比如IE develop bar或是firebug来调试,而测试往往需要通过页面展示后的js错误提示来定位.那么还有其他比较 ...
- ViewPager -- Fragment 切换卡顿 性能优化
当ViewPager切换到当前的Fragment时,Fragment会加载布局并显示内容,如果用户这时快速切换ViewPager,即 Fragment需要加载UI内容,而又频繁地切换Fragment, ...
- poj 1163 The Triangle
The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 43809 Accepted: 26430 De ...
- 【转】【C#】ColorMatrix
ColorMatrix(色彩矩阵),是GDI+里用来调整图片色彩的矩阵. 什么是矩阵,说白了就是C#里的二维数组. 那么这个矩阵调整色彩的原理是什么,他是怎么来调整色彩的呢?这个要从线性代数里的矩阵相 ...
- 加密方式&数字签名
1,对称加密 2,混合加密 3.数字签名 4,带加密的数字签名
- C#不同窗体间通信,数据传递
在一个项目中,很多时候都需要在窗体间进行数据传递和通信,最觉见的是父子窗体之间的数据传递,比如登录ID,各个窗体都需要知道.有很多文章都写了这方面的问题,提出很多优秀的方法,鄙人不才,搜了一些资料之后 ...