Function

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 652    Accepted Submission(s): 267

Sample Input
3 2
1 0 2
0 1
3 4
2 0 1
0 2 3 1
Sample Output
Case #1: 4
Case #2: 4
Source
分析:

题目大意:

给你一个数组A,和一个数组B,数组A是【0~n-1】的排咧,数组B是【0~m-1】的排列。

现在定义F(i)=bF(ai);

问有多少种取值,使得F(i)全部合法。

样例1可行的解:

110

111

001

000

分析:

写出样例2的公式:

①F(0)=bF(2)

②F(1)=bF(0)

③F(2)=bF(1)

我们不难发现,如果我们设定了F(0)的值,就能够通过式子②能够得知F(1)的值,然后就能通过式子③得知F(2)的值,最后再回归式子①尝试当前设定的值是否合法了。

这就是一个循环节

我们对于A数组中的一个环的话如果一个环中的任意一个点的价值我们能够设定出来,那么这一个循环节的所有点的值就都能够知道了。

然而这个能够设定的值,肯定是数组B中的一个值,而且我们已知都是循环节,那么数组B中的这个被选中设定的值也一定存在一个循环节,而且这个循环节的长度,一定是A长度循环节的因子长度。

A数组中长度为D的一个循环节,如果B数组中有一个循环节的长度为d,并且如果D%d==0.那么这个B数组的这个循环节的所有值,都可以作为A数组中这个循环节的值。那么对于A数组中的这个循环节来讲,答案数就多了d个。

过程统计每个循环节能够满足的答案的个数,然后累乘即可。

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
const int maxn=;
const int mod=;
int n,m,ans=;
int a[maxn],b[maxn];
int cal[][maxn];
bool vis[maxn];
inline void DFS(int t,int l,int *a,int k)
{
if(vis[t])
{
cal[k][l]++;
return;
}
vis[t]=;
DFS(a[t],l+,a,k);
}
int main()
{
int tcase=;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=;i<n;i++)
scanf("%d",&a[i]);
for(int i=;i<m;i++)
scanf("%d",&b[i]);
memset(cal,,sizeof(cal));
memset(vis,false,sizeof(vis));
for(int i=;i<m;i++)
{
if(!vis[i])
DFS(i,,b,);
}
memset(vis,false,sizeof(vis));
for(int i=;i<n;i++)
{
if(!vis[i])
DFS(i,,a,);
}
ans=;
for(int i=;i<=n;i++)
{
if(cal[][i])
{
int lim=(int)sqrt(i+0.5);
int ta=;
for(int j=;j<=lim;j++)
{
if(i%j==)
{
(ta+=(long long)cal[][j]%mod*j%mod)%=mod;
if(j*j!=i)
(ta+=(long long)cal[][i/j]%mod*(i/j)%mod)%=mod;
}
}
for(int j=;j<=cal[][i];j++)
{
ans=(long long)ans*ta%mod;
}
}
}
printf("Case #%d: %d\n",tcase++,ans);
}
return ;
}

2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 1 1006 HDU 6038 Function (排列组合)

    题目链接 Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m ...

  2. HDU 6038.Function-数学+思维 (2017 Multi-University Training Contest - Team 1 1006)

    学长讲座讲过的,代码也讲过了,然而,当时上课没来听,听代码的时候也一脸o((⊙﹏⊙))o 我的妈呀,语文不好是硬伤,看题意看了好久好久好久(死一死)... 数学+思维题,代码懂了,也能写出来,但是还是 ...

  3. HDU 6166.Senior Pan()-最短路(Dijkstra添加超源点、超汇点)+二进制划分集合 (2017 Multi-University Training Contest - Team 9 1006)

    学长好久之前讲的,本来好久好久之前就要写题解的,一直都没写,懒死_(:з」∠)_ Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memor ...

  4. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  5. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  6. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  7. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  8. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. Kafka详细的设计和生态系统

    欢迎大家前往云加社区,获取更多腾讯海量技术实践干货哦~ 译者:人工智能资讯小编 本译文自Jean-Paul Azar 在 https://dzone.com 发表的 Kafka Detailed De ...

  2. 【Linux】Linux学习笔记(完结)

    前言 在工作中发现Linux系统的重要性,于是计划重温下Linux,顺便记录笔记方便之后查阅. 磁盘分区 在Linux系统中,每个设备都被当成一个文件来对待:如IDE接口的硬盘文件名为/dev/hd[ ...

  3. 尝试在条件“$(_DeviceSdkVersion) >= 21”中对计算结果为“”而不是数字的“$(_DeviceSdkVersion)

    晚上搞xamarin ,运行xamarin项目好好的,不知道怎么回事,一次运行xamarin android项目的时候,部署失败,以前也是遇到这样的错误. 尝试在条件"$(_DeviceSd ...

  4. mysql5.7-Group Replication

    什么是Group Replication 基于组的复制(Group-based Replication)是一种被使用在容错系统中的技术.Replication-group(复制组)是由能够相互通信的多 ...

  5. 如何严格设置php中session过期时间

    如何严格限制session在30分钟后过期! 1.设置客户端cookie的lifetime为30分钟: 2.设置session的最大存活周期也为30分钟: 3.为每个session值加入时间戳,然后在 ...

  6. CSS3 使用选择器在页面插入内容

    使用选择器来插入文字 h2:before{ content:'COLUMN'; color:white: background-color:orange: padding:1px 5px; } 注意点 ...

  7. 深入学习rollup来进行打包

    深入学习rollup来进行打包 阅读目录 一:什么是Rollup? 二:如何使用Rollup来处理并打包JS文件? 三:设置Babel来使旧浏览器也支持ES6的代码 四:添加一个debug包来记录日志 ...

  8. C# Split用法

    1.用字符串分隔: using System.Text.RegularExpressions;string str="aaajsbbbjsccc";string[] sArray= ...

  9. C语言学生管理系统(原版本)(自编)

    /*系统特色:(大牛勿笑) *颜色提示 *文字提示 *功能 */ #include <stdio.h> #include <stdlib.h> #include <mat ...

  10. Swift语言中与C/C++和Java不同的语法(三)

    这一部分的主要内容是Swift中的Collections 我们知道Java中的Collection基本上是每一个Java程序猿接触到的第一个重要的知识点. 在Swift中也不例外,Swift中的Col ...