LibreOJ NOI Round #1 Day 1 B. 失控的未来交通工具
题意:一个带边权无向图,加边以及询问在 x,x+b,...,x+(c−1)bx,x+b,...,x+(c-1)bx,x+b,...,x+(c−1)b 这些数中,有多少存在一条与之模 m 同余的从 u 到 v 的路径(可以不是简单路径)。
考场上读错题系列,以为边是有向的,然后就完全不可做了对不对……
由于是无向边,而且路径可以不是简单路径,那就意味着我们可以在联通块内随便绕圈。那就变成了一个数是否能在模m意义下被各圈大小线性表出的问题,加上这些数是用等差数列的形式给出,也就是同余方程,这就是一个同余方程组了嘛,然后拓欧解解就行了。
#include<cstdio>
#include<algorithm>
#define MN 1100000
#define ll int
using namespace std;
int read_p,read_ca,read_f;
inline int read(){
read_p=;read_ca=getchar();read_f=;
while(read_ca<''||read_ca>'') read_f=read_ca=='-'?-:read_f,read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p*read_f;
}
int n,m,Q,f[MN],opt,x,y,z,q,c,a,b;
ll d[MN],g[MN];
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int gf(int x){
if (x==f[x]) return x;
int w=gf(f[x]);
(d[x]+=d[f[x]])%=m;
return f[x]=w;
}
int exgcd(int x,int y,int &a,int &b){
if (y){
int t=exgcd(y,x%y,b,a);
b-=x/y*a;
return t;
}else return a=,b=,x;
}
int main(){
n=read();m=read();Q=read();
for (int i=;i<=n;i++) f[i]=i,d[i]=,g[i]=m;
while (Q--){
opt=read();
if (opt==){
x=read(),y=read(),z=read();
int X=gf(x),Y=gf(y);
if (X==Y) g[X]=gcd(g[X],((z+d[x])%m+d[y])%m);else{
f[X]=y;(d[X]=d[x]+z)%=m;
g[Y]=gcd(g[Y],gcd(z*%m,g[X]));
}
}else{
x=read();y=read();q=read();c=read();z=read();
int X;
if ((X=gf(x))!=gf(y)) puts("");else{
q=(d[x]+d[y]-q)%m+m;q%=g[X];
if (q%(x=exgcd(c,g[X],a,b))){puts("");continue;}
y=g[X]/gcd(g[X],c);
a=1LL*q/x*a%y;if (a<) a+=y;z--;
printf("%d\n",(z-a+y)/y);
}
}
}
}
LibreOJ NOI Round #1 Day 1 B. 失控的未来交通工具的更多相关文章
- 「LibreOJ NOI Round #2」不等关系
「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...
- LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿
二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...
- LibreOJ NOI Round #2 Day 1
LibreOJ NOI Round #2 Day 1 T1: 别被定义弄晕了 反着做,A->1/A+B 取倒数没法做,所以变成a/b,维护2*2的矩阵 区间?不用线段树,不用倍增 存在逆矩阵,直 ...
- 失控的未来交通工具 (LOJ 508,带权并查集,数论)
LOJ 508 失控的未来交通工具 (带权并查集 + 数论) $ solution: $ 很综合的一道难题.看了让人不知所措,数据范围又大,题目描述又不清晰.只能说明这道题有很多性质,或者很多优化. ...
- LOJ#508. 「LibreOJ NOI Round #1」失控的未来交通工具
题意 一个带边权无向图,有两种操作:加边以及询问在\(x,x+b,...,x+(c-1)b\)这些数中,有多少个数存在至少一条与之模\(m\)同余的从\(u\)到\(v\)的路径(可以不是简单路径). ...
- 「LibreOJ NOI Round #1」验题
麻烦的动态DP写了2天 简化题意:给树,求比给定独立集字典序大k的独立集是哪一个 主要思路: k排名都是类似二分的按位确定过程. 字典序比较本质是LCP下一位,故枚举LCP,看多出来了多少个独立集,然 ...
- #509. 「LibreOJ NOI Round #1」动态几何问题
下面给出部分分做法和满分做法 有一些奇妙的方法可以拿到同样多的分数,本蒟蒻只能介绍几种常见的做法 如果您想拿18分左右,需要了解:质因数分解 如果您想拿30分左右,需要了解:一种较快的筛法 如果您想拿 ...
- #510. 「LibreOJ NOI Round #1」动态几何问题
题目: 题解: 几何部分,先证明一下 \(KX = \sqrt{a},YL = \sqrt{b}\) 设左侧的圆心为 \(O\) ,连接 \(OK\) ,我们有 \(OK = r\). 然后有 \(r ...
- #507. 「LibreOJ NOI Round #1」接竹竿 dp
题目: 题解: 我们考虑把每对花色相同的牌看作区间. 那么如果我们设 \(f_i\) 表示决策在 \([1,i]\) 内的最优答案. 那么有 \(f_i = max\{max\{(f_{j-1}+\s ...
随机推荐
- 搭建lnmp教程
LNMP指的是一个基于CentOS/Debian 上安装Nginx.PHP.MySQL.php.可以在独立主机上轻松的安装LNMP生产环境. 1 安装nginx 如果是一台新的服务器可直接安装(若以前 ...
- [置顶]
webapi token、参数签名是如何生成的
一个问题 在这里我想问大家一句,如果你向一个刚刚接触.net web后端程序开发的同学(别人刚刚也就学了webform的request,response,会提交表单的这种刚接触不久的同学),你怎么去解 ...
- 视觉SLAM中相机详解
视觉SLAM中,通常是指使用相机来解决定位和建图问题. SLAM中使用的相机往往更加简单,不携带昂贵的镜头,以一定的速率拍摄周围的环境,形成一个连续的视频流. 相机分类: 单目相机:只是用一个摄像头进 ...
- java方向及学习方法
随笔:由于回首最近刚刚上班的缘故,平时基本没时间上播客了,所以回首会定期的抽时间分享一些干货给朋友们,就是周期不会像之前那么频繁了.最近有朋友跟回首说想没事儿的时候自学Java,但苦于不知道怎么去学, ...
- FPGA浮点数定点化
因为在普通的fpga芯片里面,寄存器只可以表示无符号型,不可以表示小数,所以在计算比较精确的数值时,就需要做一些处理,不过在altera在Arria 10 中增加了硬核浮点DSP模块,这样更加适合硬件 ...
- 关于oracle数据库 跨表查询建立 视图的方法
工作中很多时候都会遇到需要将两个不同的表空间甚至数据库的表进行联合查询或者建立视图的情况. 不同的表空间查询我们可以通过在将要查询的表前面加上 表空间的对应的用户名来实现,如有两个表空间分别对应两个用 ...
- 三:Redis连接池、JedisPool详解、Redisi分布式
单机模式: package com.ljq.utils; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; ...
- CHECKDB内部:什么是BlobEater?
DBCC CHECKDB注意到有关数据文件页面.一旦整个表的所有页(或一组表,如果配料已启用-看到同样的博客文章我上面提到的),所有的事实都聚集在一起,他们都应该相互抵消.当有额外的事实(在索引B树都 ...
- Mock拦截请求URL返回模板数据
背景 : 前后端开发依赖后端数据, 当前端页面开发完成 ,后端在没有提供前端数据的情况下 ,前端无法测试, 导致开发效率低 ,速度慢 ,为了解决这一问题 ,通过Mock模拟生成数据在不改变原有代码前提 ...
- 中国孩子的micro:bit:TurnipBit自制小乐器教程实例
孩子们是最贪玩的也是最聪明的,因此在过去的数年中,市面上出现了不少寓教于乐的理工科知识(STEM)学习新方法.如今这类产品中又有了一名新成员,TPYBoard重磅推出一款针对小白.中小学生的可编程计算 ...