DATA VISUALIZATION – PART 1
Introduction to Data Visualization – Theory, R & ggplot2
The topic of data visualization is very popular in the data science community. The market size for visualization products is valued at $4 Billion and is projected to reach $7 Billion by the end of 2022 according to Mordor Intelligence. While we have seen amazing advances in the technology to display information, the understanding of how, why, and when to use visualization techniques has not kept up. Unfortunately, people are often taught how to make a chart before even thinking about whether or not it’s appropriate.
In short, are you adding value to your work or are you simply adding this to make it seem less boring? Let’s take a look at some examples before going through the Stoltzmaniac Data Visualization Philosophy.
I have to give credit to Junk Charts – it inspired a lot of this post.
One author at Vox wanted to show the cause of death in all of Shakespeare
Is this not insane!?!?!
Using a legend instead of data callouts is the only thing that could have made this worse. The author could easily have used a number of other tools to get the point across. While wordles are not ideal for any work requiring exact proportions, it does make for a great visual in this article.Junk Charts Article.
To be clear, I’m not close to being perfect when it comes to visualizations in my blog. The sizes, shapes, font colors, etc. tend to get out of control and I don’t take the time in R to tinker with all of the details. However, when it comes to displaying things professionally, it has to be spot on! So, I’ll walk through my theory and not worry too much about aesthetics (save that for a time when you’re getting paid).
The Good, The Bad, The Ugly
“The Good” visualizations:
- Clearly illustrate a point
- Are tailored to the appropriate audience
- Analysts may want detail
- Executives may want a high-level view
- Are tailored to the presentation medium
- A piece in an academic journal can be analyzed slowly and carefully
- A slide in front of 5,000 people in a conference will be glanced at quickly
- Are memorable to those who care about the material
- Make an impact which increases the understanding of the subject matter
“The Bad” visualizations:
- Are difficult to interpret
- Are unintentionally misleading
- Contain redundant and boring information
“The Ugly” visualizations:
- Are almost impossible to interpret
- Are filled with completely worthless information
- Are intentionally created to mislead the audience
- Are inaccurate
Coming soon:
- Introduction to the ggplot2 in R and how it works
- Determining whether or not you need a visualization
- Choosing the type of plot to use depending on the use case
- Visualization beyond the standard charts and graphs
As always, the code used in this post is on my GitHub
转自:https://www.stoltzmaniac.com/data-visualization-part-1/
DATA VISUALIZATION – PART 1的更多相关文章
- 7 Tools for Data Visualization in R, Python, and Julia
7 Tools for Data Visualization in R, Python, and Julia Last week, some examples of creating visualiz ...
- Data Visualization 课程 笔记1
对数据可视化比较有兴趣,因此最近在看coursera上伊利诺伊大学香槟分校的数据可视化课程,做了一些笔记. 1. 定义 Data visualization is a high bandwidth c ...
- DATA VISUALIZATION – PART 2
A Quick Overview of the ggplot2 Package in R While it will be important to focus on theory, I want t ...
- Data Visualization – Banking Case Study Example (Part 1-6)
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- D3.js & Data Visualization & SVG
D3.js & Data Visualization & SVG https://davidwalsh.name/learning-d3 // import {scaleLinear} ...
- charts & data visualization
charts & data visualization https://www.sitepoint.com/15-best-javascript-charting-libraries/ Can ...
- 学习笔记之Bokeh Data Visualization | DataCamp
Bokeh Data Visualization | DataCamp https://www.datacamp.com/courses/interactive-data-visualization- ...
- 学习笔记之Introduction to Data Visualization with Python | DataCamp
Introduction to Data Visualization with Python | DataCamp https://www.datacamp.com/courses/introduct ...
- 学习笔记之Data Visualization
Data visualization - Wikipedia https://en.wikipedia.org/wiki/Data_visualization Data visualization o ...
随机推荐
- iOS 滑动页面标题切换颜色渐变效果
话不多说,直接上图,要实现类似如下效果. 这个效果非常常见,这里着重讲讲核心功能 封装顶部的PageTitleView 封装构造函数 封装构造函数,让别人在创建对象时,就传入其实需要显示的内容 fra ...
- Android -- 从源码带你从EventBus2.0飚到EventBus3.0(一)
1,最近看了不少的面试题,不管是百度.网易.阿里的面试题,都会问到EventBus源码和RxJava源码,而自己只是在项目中使用过,却没有去用心的了解它底层是怎么实现的,所以今天就和大家一起来学习学习 ...
- Unity3d中的PlayerPrefs游戏存档API的扩展
功能 在游戏会话中储存和访问游戏存档.这个是持久化数据储存,比如保存游戏记录. 静态函数 DeleteAll Removes all keys and values from the preferen ...
- java多线程基本概述(一)——线程的基本认知
1.1.概念: 进程:进程是操作系统结构的基础,是一次程序的执行:是一个程序及其数据再处理器上顺序执行时所发生的活动:是程序再一个数据集合上运行的过程,它是系统进行系统资源分配和调度的最小单元. 线程 ...
- stm32之USART学习
首先,我是看着这位博主的文章受到的启发,进而加深了自己对USART的理解.下面是自己改装并实验过的程序. 原文:http://www.cnblogs.com/greatwgb/archive/2011 ...
- STM32定时器
/*****************************************************************************初始化定时器**************** ...
- Vim常用操作-快速删除括号中内容。
如果你和我一样,希望拥有众多工具,发挥工具最大执行效率,让工作事半功倍的话,我推荐你来使用下 Vim. 刚接触Vim 会觉得它的学习曲线非常陡峭,要记住很多命令,操作太复杂.所以这个系列的分享,不会教 ...
- 脚本语言:Xmas(三)
自从将Xmas的GC换成现在的非迁移式的全局收集器后,最近几个月一直耗在Xmas上面:最明显的改变就是:更彻底地支持了面向对象.更强大的编译器. 所以,本文就来说说,真正的Xmas. 一.目标 一门语 ...
- 随机Prim法创建随机迷宫(C#实现)
因为这两天想参加一个比赛,所以就在上网找素材,刚好看到了迷宫生成,就决定拿这个开刀了. 参考的原文地址为(来源页面) 源地址中是使用AS实现的,没学过AS,所以直接不会运行,于是就自己根据原文的概念进 ...
- JavaFx自定义Tab-Order
title: JavaFx自定义Tab-Order Tab-order是什么?在界面上当你按tab键触发焦点转移的功能,这就是tab order.但是Javafx有个缺陷就是不方便自己设置tab-or ...