深入浅出多线程——ReentrantLock (一)文章中介绍了该类的基本使用,以及在源码的角度分析lock()、unlock()方法。这次打算在此基础上介绍另一个极为重要的方法newCondition(),其实这类已经不属于ReentrantLock的范畴了,是java.util.concurrent.locks.Condition接口的一个实现,位于AbstractQueuedSynchronizer(简称:AQS)中的内部类ConditionObject。

  该类提供了await*()、signal*()等方法。本次只对await()、signal()方法在源码的角度进行解析。

原理分析

await()方法分析

ConditionObject.await()
         public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}

  1、判断线程是否被中断,如果被中断则抛出 InterruptedException。

  2、调用了addConditionWaiter()方法,将当前线程添加到等待队列中。

  3、第5行,调用fullyRelease(Node)方法,尝试释放当前线程并返回释放前的state值。

  4、第7行,while循环条件为isOnSyncQueue(Node) 取反,也就是说该方法必须返回false才能进入循环体。进入后调用LockSupport.park()挂起当前线程。

  5、等待调用signal()方法,将其加入同步队列等待调度到。调度到后,线程接着往下走,因为此时已经在同步队列中,while循环跳出。

  6、来到第12行,尝试将state的值还原到await之前,如果还原成功,则线程继续往下走。如果不成功说明再此期间,已经被其他线程占用,则继续等待。

  7、如果当前等待的节点有下游等待节点,在进行清理被取消的等待节点。

  8、方法执行完毕后,则继续执行线程的业务,直至调用到unlock()。

ConditionObject.addConditionWaiter()
         private Node addConditionWaiter() {
Node t = lastWaiter;
// If lastWaiter is cancelled, clean out.
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}

  1、判断lastWaiter是否为有效状态,如果无效,执行unlinkCancelledWaiters()方法,将其无效的节点清理掉。将当前线程设置为一个node,waitStatus值为-2。

  2、判断lastWaiter是否为null,如果为null代表队列为空,那么将创建的node赋值到队列的firstWaiter属性上,如果不为null,则链接到队列最后一个node的下游(因为第一次调用await()方法,此时lastWaiter肯定为空)。然后将队列的lastWaiter属性设置为新建的node。

Condition.fullyRelease(Node)
    final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}

  1、获取当前线程的state值、然后调用AQS.release(int)尝试释放当前线程,如果释放成功则返回线程state。
有关AQS.relase(int)方法的分析,已经在前一篇文章中进行详细说明。如需查看请点击

  2、如果没有释放成功,则抛出异常 IllegalMonitorStateException,并且将node.waitStatus状态设置为取消。

AbstractQueuedSynchronizer.isOnSyncQueue(Node)
     final boolean isOnSyncQueue(Node node) {
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
if (node.next != null) // If has successor, it must be on queue
return true; return findNodeFromTail(node);
}

  这个方法从字面意思为当前节点是否在同步列队中,如果在则返回true。这个地方个人表示挺难理解的,在这里我尽量用通俗易懂的方式进行阐述。

  1、第2行,判断当前node的waitStatus值是否为-2(await())或者node.prev是否为null,两者满足其一就返回false。判断node的waitStatus的值是否为-2很好理解,调用了await后,第一次来到这个方法,肯定是成立的。判断node.prev是否为null,这个地方是比价绕的,第一次进来同样为null。在什么时候这个条件不成立呢?当时看的时候就有点头晕,于是就开启联想模式,终于有了点思路,就是说调用await()方法的线程一定处于同步列队的head,此时他的prev一定是null,在看过signal()方法后,看到线程被其唤醒时需要重新加入同步队列。这时只能放到队列的末尾,node.prev就被指向了他的上游节点。

  2,当第一个判断全部不成立时,接着执行了第二个判断,node.next是否为null,不为null则返回true。这个地方是他已经处于了同步队列,并且已经有了下游节点。

  3,前两个判断都不满足的情况下直接调用了findNodeFromTail(node),字面意思是从队列的末尾查找node,什么情况下会调用到这个方法呢?node本身就处于末尾时调用。

signal()方法分析

ConditionObject.signal()
         public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}

  获取到第一个等待者,如果不为null则执行doSignal(Node)

ConditionObject.doSignal(Node)
         private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}

  1、进入do-while循环体,判断first.nextWaiter是否为null,如果为null则将lastWaiter置为null。

   2、紧接着进入while条件,继续循环的条件为调用transferForSignal(Node)返回false,并且firstWaiter不为null。

AbstractQueuedSynchronizer.transferForSignal(Node)
     final boolean transferForSignal(Node node) {

         if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false; Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}

  1、首先将当前node的waitStatus的值由-2设置为0,并判断是否返回false。如果返回false,则说明该线程被取消。

  2、调用熟悉的enq(Node)方法,把当前node拼接到同步列队中并返回node上游节点p。

  3、此时p的waitStatus等于0。所以直接进入第二个判断条件,将p的waitStatus从0设置为-1。如果此时设置失败后,将直接当前node解锁。设置失败的前提个人理解为:p处于运行中,也就是说调用了LockSupport.unpark(p.thread),还有一种情况就是线程被取消。

 总结

   1、Condition提供了一套线程等待及唤醒机制,与之匹配为Object.wait/notify等方法。但后者的使用条件为synchronized,不能直接在ReentrantLock中应用。

   2、Condition可以在一个lock对象中存在多个,灵活方便。

   3、ConditionObject类中也存在了大量的AQS操作,同样说明AQS是同步框架的基础框架。

深入浅出多线程——ReentrantLock (二)的更多相关文章

  1. 深入浅出多线程——ReentrantLock (一)

    ReentrantLock是一个排它重入锁,与synchronized关键字语意类似,但比其功能更为强大.该类位于java.util.concurrent.locks包下,是Lock接口的实现类.基本 ...

  2. 简述Java多线程(二)

    Java多线程(二) 线程优先级 Java提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度器按照优先级决定应该调度哪个线程来执行. 优先级高的不一定先执行,大多数情况是这样的. 优 ...

  3. [.net 面向对象程序设计进阶] (17) 多线程(Multithreading)(二) 利用多线程提高程序性能(中)

    [.net 面向对象程序设计进阶] (17) 多线程(Multithreading)(二) 利用多线程提高程序性能(中) 本节要点: 上节介绍了多线程的基本使用方法和基本应用示例,本节深入介绍.NET ...

  4. Java多线程(二)关于多线程的CPU密集型和IO密集型这件事

    点我跳过黑哥的卑鄙广告行为,进入正文. Java多线程系列更新中~ 正式篇: Java多线程(一) 什么是线程 Java多线程(二)关于多线程的CPU密集型和IO密集型这件事 Java多线程(三)如何 ...

  5. Java多线程(二) —— 线程安全、线程同步、线程间通信(含面试题集)

    一.线程安全 多个线程在执行同一段代码的时候,每次的执行结果和单线程执行的结果都是一样的,不存在执行结果的二义性,就可以称作是线程安全的. 讲到线程安全问题,其实是指多线程环境下对共享资源的访问可能会 ...

  6. java多线程系列(二)

    对象变量的并发访问 前言:本系列将从零开始讲解java多线程相关的技术,内容参考于<java多线程核心技术>与<java并发编程实战>等相关资料,希望站在巨人的肩膀上,再通过我 ...

  7. java多线程系列(二)---对象变量并发访问

    对象变量的并发访问 前言:本系列将从零开始讲解java多线程相关的技术,内容参考于<java多线程核心技术>与<java并发编程实战>等相关资料,希望站在巨人的肩膀上,再通过我 ...

  8. java多线程解读二(内存篇)

    线程的内存结构图 一.主内存与工作内存 1.Java内存模型的主要目标是定义程序中各个变量的访问规则.此处的变量与Java编程时所说的变量不一样,指包括了实例字段.静态字段和构成数组对象的元素,但是不 ...

  9. 多线程编程之Linux环境下的多线程(二)

    上一篇文章中主要讲解了Linux环境下多线程的基本概念和特性,本文将说明Linux环境下多线程的同步方式. 在<UNIX环境高级编程>第二版的“第11章 线程”中,提到了类UNIX系统中的 ...

随机推荐

  1. jQuery 常用操作(转)

    一.书写规则 支持链式操作: 在变量前加"$"符号(var $variable = jQuery 对象): 注:此规定并不是强制要求. 二.寻找元素 选择器 基本选择器 层级选择器 ...

  2. Fedora 下 Google-Chrome 经常出现僵尸进程的权宜办法

    对于Chrome_ProcessL 和Chrome_FileThre这两僵尸进程,估计遇到过的人都对其各种无奈吧,放任不管吧,越来越多,然后卡死,只能另开个X环境或者在其他的TTY里干掉他俩再切回去, ...

  3. LINUX 笔记-top命令

    top命令经常用来监控linux的系统状况,比如cpu.内存的使用. top - :: up day, :, users, load average: 0.00, 0.01, 0.00 Tasks: ...

  4. [Linux 使用(2)] 64位Linux下安装jboss-as-7.1 以及jdk1.7

    一.软件的下载 jdk下载地址:    http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.h ...

  5. Mongodb的mongostat命令

    Mongodb的mongostat命令可实时(1秒钟刷新一次)显示Mongodb数据库的运行情况,可视为性能监视器. 1.启动命令:authenticationDatabase表示用户认证证书所在的数 ...

  6. 打包zip下载

    //首先引入的文件为org.apache的切记不是jdk的import org.apache.tools.zip.ZipOutputStream;import org.apache.tools.zip ...

  7. svn 提交 working copy is not up-to-date

    svn在提交时报错信息如下: working copy is not up-to-date svn:commit failed(details follow): svn:file "xxxx ...

  8. LeetCode 66. Plus One(加1)

    Given a non-negative integer represented as a non-empty array of digits, plus one to the integer. Yo ...

  9. Python多进程应用

    在我之前的一篇博文中详细介绍了Python多线程的应用:  进程,线程,GIL,Python多线程,生产者消费者模型都是什么鬼 但是由于GIL的存在,使得python多线程没有充分利用CPU的多核,为 ...

  10. 四、MVC简介

    一.高内聚.低耦合 大学的时候,上过一门叫<软件工程>的课程,课程中讲到了耦合,解耦等相关的词汇,当时很懵懂,不解其意. 耦合:是指两个或两个以上的体系或两种运动形式间通过相互作用而彼此影 ...