object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。

object detection技术的演进:
RCNN->SppNET->Fast-RCNN->Faster-RCNN

从图像识别的任务说起
这里有一个图像任务:
既要把图中的物体识别出来,又要用方框框出它的位置。

上面的任务用专业的说法就是:图像识别+定位
图像识别(classification):
输入:图片
输出:物体的类别
评估方法:准确率

定位(localization):
输入:图片
输出:方框在图片中的位置(x,y,w,h)
评估方法:检测评价函数 intersection-over-union ( IOU )

卷积神经网络CNN已经帮我们完成了图像识别(判定是猫还是狗)的任务了,我们只需要添加一些额外的功能来完成定位任务即可。

定位的问题的解决思路有哪些?
思路一:看做回归问题
看做回归问题,我们需要预测出(x,y,w,h)四个参数的值,从而得出方框的位置。



步骤1:
  • 先解决简单问题, 搭一个识别图像的神经网络
  • 在AlexNet VGG GoogleLenet上fine-tuning一下

步骤2:
  • 在上述神经网络的尾部展开(也就说CNN前面保持不变,我们对CNN的结尾处作出改进:加了两个头:“分类头”和“回归头”)
  • 成为classification + regression模式

步骤3:
  • Regression那个部分用欧氏距离损失
  • 使用SGD训练

步骤4:
  • 预测阶段把2个头部拼上
  • 完成不同的功能

这里需要进行两次fine-tuning
第一次在ALexNet上做,第二次将头部改成regression head,前面不变,做一次fine-tuning

Regression的部分加在哪?

有两种处理方法:
  • 加在最后一个卷积层后面(如VGG)
  • 加在最后一个全连接层后面(如R-CNN)

regression太难做了,应想方设法转换为classification问题。
regression的训练参数收敛的时间要长得多,所以上面的网络采取了用classification的网络来计算出网络共同部分的连接权值。

思路二:取图像窗口
  • 还是刚才的classification + regression思路
  • 咱们取不同的大小的“框”
  • 让框出现在不同的位置,得出这个框的判定得分
  • 取得分最高的那个框

左上角的黑框:得分0.5

右上角的黑框:得分0.75

左下角的黑框:得分0.6

右下角的黑框:得分0.8

根据得分的高低,我们选择了右下角的黑框作为目标位置的预测。
注:有的时候也会选择得分最高的两个框,然后取两框的交集作为最终的位置预测。

疑惑:框要取多大?
取不同的框,依次从左上角扫到右下角。非常粗暴啊。

总结一下思路:
对一张图片,用各种大小的框(遍历整张图片)将图片截取出来,输入到CNN,然后CNN会输出这个框的得分(classification)以及这个框图片对应的x,y,h,w(regression)。

这方法实在太耗时间了,做个优化。
原来网络是这样的:



优化成这样:把全连接层改为卷积层,这样可以提提速。

物体检测(Object Detection)
当图像有很多物体怎么办的?难度可是一下暴增啊。

那任务就变成了:多物体识别+定位多个物体
那把这个任务看做分类问题?

看成分类问题有何不妥?
  • 你需要找很多位置, 给很多个不同大小的框
  • 你还需要对框内的图像分类
  • 当然, 如果你的GPU很强大, 恩, 那加油做吧…

看做classification, 有没有办法优化下?我可不想试那么多框那么多位置啊!
有人想到一个好方法:
找出可能含有物体的框(也就是候选框,比如选1000个候选框),这些框之间是可以互相重叠互相包含的,这样我们就可以避免暴力枚举的所有框了。



大牛们发明好多选定候选框的方法,比如EdgeBoxes和Selective Search。
以下是各种选定候选框的方法的性能对比。



有一个很大的疑惑,提取候选框用到的算法“选择性搜索”到底怎么选出这些候选框的呢?那个就得好好看看它的论文了,这里就不介绍了。

R-CNN横空出世
基于以上的思路,RCNN的出现了。

步骤一:训练(或者下载)一个分类模型(比如AlexNet)

步骤二:对该模型做fine-tuning
  • 将分类数从1000改为20
  • 去掉最后一个全连接层


步骤三:特征提取
  • 提取图像的所有候选框(选择性搜索)
  • 对于每一个区域:修正区域大小以适合CNN的输入,做一次前向运算,将第五个池化层的输出(就是对候选框提取到的特征)存到硬盘

步骤四:训练一个SVM分类器(二分类)来判断这个候选框里物体的类别
每个类别对应一个SVM,判断是不是属于这个类别,是就是positive,反之nagative
比如下图,就是狗分类的SVM

步骤五:使用回归器精细修正候选框位置:对于每一个类,训练一个线性回归模型去判定这个框是否框得完美。

RCNN的进化中SPP Net的思想对其贡献很大,这里也简单介绍一下SPP Net。

SPP Net
SPP:Spatial Pyramid Pooling(空间金字塔池化)
它的特点有两个:

1.结合空间金字塔方法实现CNNs的对尺度输入。
一般CNN后接全连接层或者分类器,他们都需要固定的输入尺寸,因此不得不对输入数据进行crop或者warp,这些预处理会造成数据的丢失或几何的失真。SPP Net的第一个贡献就是将金字塔思想加入到CNN,实现了数据的多尺度输入。

如下图所示,在卷积层和全连接层之间加入了SPP layer。此时网络的输入可以是任意尺度的,在SPP layer中每一个pooling的filter会根据输入调整大小,而SPP的输出尺度始终是固定的。

 

2.只对原图提取一次卷积特征
在R-CNN中,每个候选框先resize到统一大小,然后分别作为CNN的输入,这样是很低效的。
所以SPP Net根据这个缺点做了优化:只对原图进行一次卷积得到整张图的feature map,然后找到每个候选框zaifeature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层。节省了大量的计算时间,比R-CNN有一百倍左右的提速。

Fast R-CNN
SPP Net真是个好方法,R-CNN的进阶版Fast R-CNN就是在RCNN的基础上采纳了SPP Net方法,对RCNN作了改进,使得性能进一步提高。

R-CNN与Fast RCNN的区别有哪些呢?
先说RCNN的缺点:即使使用了selective search等预处理步骤来提取潜在的bounding box作为输入,但是RCNN仍会有严重的速度瓶颈,原因也很明显,就是计算机对所有region进行特征提取时会有重复计算,Fast-RCNN正是为了解决这个问题诞生的。

大牛提出了一个可以看做单层sppnet的网络层,叫做ROI Pooling,这个网络层可以把不同大小的输入映射到一个固定尺度的特征向量,而我们知道,conv、pooling、relu等操作都不需要固定size的输入,因此,在原始图片上执行这些操作后,虽然输入图片size不同导致得到的feature map尺寸也不同,不能直接接到一个全连接层进行分类,但是可以加入这个神奇的ROI Pooling层,对每个region都提取一个固定维度的特征表示,再通过正常的softmax进行类型识别。另外,之前RCNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做bbox regression,而在Fast-RCNN中,作者巧妙的把bbox regression放进了神经网络内部,与region分类和并成为了一个multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。Fast-RCNN很重要的一个贡献是成功的让人们看到了Region Proposal+CNN这一框架实时检测的希望,原来多类检测真的可以在保证准确率的同时提升处理速度,也为后来的Faster-RCNN做下了铺垫。

画一画重点:
R-CNN有一些相当大的缺点(把这些缺点都改掉了,就成了Fast R-CNN)。
大缺点:由于每一个候选框都要独自经过CNN,这使得花费的时间非常多。
解决:共享卷积层,现在不是每一个候选框都当做输入进入CNN了,而是输入一张完整的图片,在第五个卷积层再得到每个候选框的特征

原来的方法:许多候选框(比如两千个)-->CNN-->得到每个候选框的特征-->分类+回归
现在的方法:一张完整图片-->CNN-->得到每张候选框的特征-->分类+回归

所以容易看见,Fast RCNN相对于RCNN的提速原因就在于:不过不像RCNN把每个候选区域给深度网络提特征,而是整张图提一次特征,再把候选框映射到conv5上,而SPP只需要计算一次特征,剩下的只需要在conv5层上操作就可以了。

在性能上提升也是相当明显的:

Faster R-CNN
Fast R-CNN存在的问题:存在瓶颈:选择性搜索,找出所有的候选框,这个也非常耗时。那我们能不能找出一个更加高效的方法来求出这些候选框呢?
解决:加入一个提取边缘的神经网络,也就说找到候选框的工作也交给神经网络来做了。
做这样的任务的神经网络叫做Region Proposal Network(RPN)。

具体做法:
  • 将RPN放在最后一个卷积层的后面
  • RPN直接训练得到候选区域

RPN简介:
  • 在feature map上滑动窗口
  • 建一个神经网络用于物体分类+框位置的回归
  • 滑动窗口的位置提供了物体的大体位置信息
  • 框的回归提供了框更精确的位置

一种网络,四个损失函数;
  • RPN calssification(anchor good.bad)
  • RPN regression(anchor->propoasal)
  • Fast R-CNN classification(over classes)
  • Fast R-CNN regression(proposal ->box)

速度对比

Faster R-CNN的主要贡献是设计了提取候选区域的网络RPN,代替了费时的选择性搜索,使得检测速度大幅提高。

最后总结一下各大算法的步骤:
RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 对于每个候选框内图像块,使用深度网络提取特征
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

Fast RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 对整张图片输进CNN,得到feature map
  3. 找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层
  4. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
  5. 对于属于某一特征的候选框,用回归器进一步调整其位置

Faster RCNN
  1. 对整张图片输进CNN,得到feature map
  2. 卷积特征输入到RPN,得到候选框的特征信息
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类

object detection技术演进:RCNN、Fast RCNN、Faster RCNN的更多相关文章

  1. Object Detection: To Be Higher Accuracy and Faster

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51597496 在深度学习中有一类研究热 ...

  2. [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...

  3. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  4. 目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    看到一篇循序渐进讲R-CNN.Fast R-CNN.Faster R-CNN演进的博文,写得非常好,摘入于此,方便查找和阅读. object detection,就是在给定的图片中精确找到物体所在位置 ...

  5. (转)基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  6. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN,Faster R-CNN

    基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.obj ...

  7. 目标检测(四)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun SPPnet.Fast R-CNN等目标检测算法已经大幅降低了目标检测网络的运行时间. ...

  8. RCNN,fast R-CNN,faster R-CNN

    转自:https://www.cnblogs.com/skyfsm/p/6806246.html object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别. ...

  9. Object Detection︱RCNN、faster-RCNN框架的浅读与延伸内容笔记

    一.RCNN,fast-RCNN.faster-RCNN进化史 本节由CDA深度学习课堂,唐宇迪老师教课,非常感谢唐老师课程中的论文解读,很有帮助. . 1.Selective search 如何寻找 ...

随机推荐

  1. Unity获取安卓手机运营商,电量,wifi信号强度,本地Toast,获取已安装apk,调用第三方应用,强制自动重启本应用

    一个完整的游戏项目上线需要不断的完善优化,但是到了后期的开发不再仅仅是游戏了,它的复杂度远远大于纯粹的应用开发.首先必须要考虑的就是集成第三方SDK,支付这块渠道商已经帮你我们做好了,只需要按照文档对 ...

  2. BFS-基础简单的算法

    前言 有时候,当你并不了解很多高级算法的时候,搜索不失为一种解决问题的好方法,而且很多高级算法有或多或少的会用到搜索或者搜索的思想.可见,搜索是一个基础并且必须要掌握的算法. 在这篇文章中,会对BFS ...

  3. NOI全国赛(2001)--食物链

    今天写了道并查集的题,看来并查集的题刷少了,,,,,用法好神奇啊!!!开三倍并查集 用i表示自己,i+n存天敌,i+2*n存可以克制de,再逻辑判断一下即可. 所以,要意识到并查集的分类处理可以开不同 ...

  4. React Native 之 数据持久化

    前言 因为 实战项目系列 涉及到数据持久化,这边就来补充一下. 如本文有错或理解偏差欢迎联系我,会尽快改正更新! 如有什么问题,也可直接通过邮箱 277511806@qq.com 联系我. demo链 ...

  5. iOS开发之transform

    transform主要应用于动画 1.让一个按钮每次向上移动100的距离 UIButton *head = (UIButton *)[self.view viewWithTag:10]; head.t ...

  6. Linux系统date命令的参数及获取时间戳的方法

    date指令相关用法示例 date 用法: date [OPTION]... [+FORMAT]date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]] ...

  7. 关于微信小程序图片失真的解决方案

    今天来说一说 关于微信小程序的图片失真问题的解决,微信小程序的image标签要设置其宽高,不然图片若宽高过大会撑开原始图片大小的区域:如下 但是宽高设置固定了会导致有些图片和规定显示图片大小的比例不一 ...

  8. java做单用户的多重并发会话数限制

    判定条件很简单,就是在同一时刻,同一帐号仅在一个终端上可正常操作. 我这里用简单的key,value进行判定,将用户存储在map里面,新登录用户登陆进系统后,判断map里是否存在当前用户,若存在就删除 ...

  9. selenide小白教程

    目的: 趁着清明假期临近把手头工作整理了一下,前段时间老大给了一个selenide研究的任务,虽然对selenium的应用比较熟悉,但是以前一直没怎么研究过其他衍生的技术,在研究过程中发现国内好的帖子 ...

  10. UNIX标准

    背景 人们在UNIX编程环境和C 程序设计语言的标准化方面已经做了很多工作.虽然UNIX应用 程序在不同的UNIX操作系统版本之间进行移植相当容易,但是2 0 世 纪 80年代UNIX版本种类的剧增以 ...