Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 230 Accepted Submission(s): 130
 
Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.
 
Output
            Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
 
 
Source
Central Europe 1999
 
Recommend
Eddy
 
/*
给你一个多边形,然后让你求多边形的重心 初步思路:听了蒋金讲了一个重心加权平均求总重心,就是n边形,分割成n-2个小三角形,然后求出重心,面积;
用公式 求和Si*(Xi,Yi)/Sall 求出n边形的重心 #错误:加权平局的时候莫名地错 #错误反思点:double卡的精度问题,中间过程尽量不要出现先除又乘的问题,因为那样有double精度的问题会产生误差。 1e6的数据量只能遍历一边
*/
#include<bits/stdc++.h>
#define N 1000010
using namespace std;
struct Point{
double x,y;
Point(){}
Point(double a,double b){
x=a;
y=b;
}
void input(){
scanf("%lf%lf",&x,&y);
}
};
Point p;
int t,n;
vector<Point>v;//用来存储所有的点
vector<Point>Focus;//存放每个小三角形的重心
double s[N];//用来存放n-2个小三角形的面积
void init(){
v.clear();
Focus.clear();
}
double dis(Point a,Point b){//两点间距离
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
Point operation_Focus(){
double sall=;
Point p(,);
for(int i=;i<v.size()-;i++){//每个三角形由v[0],v[i],v[i+1]三个顶点组成
//面积
s[i-]=(v[i].x - v[].x)*(v[i+].y - v[].y) - (v[i].y-v[].y)*(v[i+].x - v[].x);
sall+=s[i-];
//cout<<"S="<<s[i-1]<<endl;
//重心
p.x+=s[i-]*(v[i].x+v[i+].x+v[].x)*1.0/;
p.y+=s[i-]*(v[i].y+v[i+].y+v[].y)*1.0/;
//cout<<"Point=("<<(fx*2+v[0].x)/3<<","<<(fy*2+v[0].y)/3<<")"<<endl;
}
p.x/=sall*1.0;
p.y/=sall*1.0;
return p;
}
int main(){
//freopen("in.txt","r",stdin);
scanf("%d",&t);
//cout<<t<<endl;
while(t--){
scanf("%d",&n);
//cout<<n<<endl;
init();
for(int i=;i<n;i++){
p.input();
//cout<<p.x<<" "<<p.y<<endl;
v.push_back(p);
}//将所有的点存入vector
p=operation_Focus();
printf("%.2f %.2f\n",p.x,p.y);
}
return ;
}

Lifting the Stone(求多边形的重心—)的更多相关文章

  1. Lifting the Stone(hdu1115)多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  2. POJ 1385 Lifting the Stone (多边形的重心)

    Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...

  3. (hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)

    题目: Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  4. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. hdu_1115_Lifting the Stone(求多边形重心)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1115 题意:给你N个点围成的一个多边形,让你求这个多边形的重心. 题解: 将多边形划分为若干个三角形. ...

  6. HDU1115&&POJ1385Lifting the Stone(求多边形的重心)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1115# 大意:给你个n,有n个点,然后给你n个点的坐标,求这n个点形成的多边形的重心的坐标. 直接套模 ...

  7. Lifting the Stone 计算几何 多边形求重心

    Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...

  8. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  9. POJ1385 Lifting the Stone

    There are many secret openings in the floor which are covered by a big heavy stone. When the stone i ...

随机推荐

  1. canvas浅谈 实现简单的自旋转下落

    旋转和平移是2个基础的动画效果,也是复杂动画的基础. 如果是普通的页面只要设置transform属性很容易实现平移+旋转的组合效果,达到自旋转下落的效果.因为操作的直接是动作元素本身很容易理解. 但是 ...

  2. MX4拍摄视频转码方法

    问题 使用魅族4手机拍摄的视频,其视频编码是H.265 目前大多数设备不支持解码,表现为常用播放器无法正常播放视频,剪辑软件无法剪辑视频. 解决方案 使用软件进行转码,期间尝试软件如下: 爱剪辑 部分 ...

  3. js如何判断一个对象为空

    今天碰到一个问题如何判断一个对象为空? 总结的方法如下: 1.使用jquery自带的$.isEmptyObject()函数. var data={}; console.log($.isEmptyObj ...

  4. Python数据分析(二): Numpy技巧 (1/4)

    In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  

  5. CentOS7 +vsftpd (一)之 匿名

    CentOS7 +vsftpd (一)之 匿名 ftp的搭建是一个基础性的工作,CentOS7 +vsftpd 是一个比较容易实现的平台,但在搭建中问题会不少,本系列将通过四篇随笔与大家分享. 一.C ...

  6. js X年X周 转成 具体日期

    function getWeekDate(theyear,weekcount) { var year = theyear; var week = weekcount; if(year=="& ...

  7. Centos7安装Percona5.7

    OS: Centos7.0 DB: Percona5.7 1. 通过yum安装 ## 删除之前的mysql数据库, 我用的是centos7.再安装虚拟机的时候,预装了很多软件.所以mysql和mari ...

  8. ZOJ-3933-Team Formation【二分图最佳匹配】【KM】

    http://blog.csdn.net/loy_184548/article/details/51154195    一开始对不同组合得不同分数(mm1,mg2,gg3),想用sap来写,但是保证了 ...

  9. windowsxp_电脑桌面显示不出来。

    问题:在工作的时候遇到电脑桌面显示不出来 解决方案: 1.结束explorer.exe进程 2.新建一个explorer.exe进程

  10. win10 uwp 打电话

    UWP可以使用打电话功能,在PC是用Skype,在手机是直接使用电话功能. UWP可以通过Skype打电话,那么如何通过应用间通讯,很简单使用Launcher. Skype电话使用Skype:(电话号 ...