Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems

Time Limit: 3000 mSec

Problem Description

Input

The input contains a single line consisting of 2 integers N and M (1≤N≤10^18, 2≤M≤100).

Output

Print one integer, the total number of configurations of the resulting set of gems, given that the total amount of space taken is N units. Print the answer modulo 1000000007.

Sample Input

4 2

Sample Output

5

题解:很简单的dp,考虑第一个数分裂不分裂,dp[n] = dp[n - m] + dp[n - 1],其中dp[n]就是站n个单位空间的方法数,由于N比较大,所以很明显要用矩阵快速幂,写这篇题解同时提醒自己快速幂之前一定要判断指数是否非负。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0);
const int SIZE = + ;
const LL MOD = ; struct Matrix
{
int r, c;
LL mat[SIZE][SIZE];
Matrix() {}
Matrix(int _r, int _c)
{
r = _r;
c = _c;
memset(mat, , sizeof(mat));
}
}; Matrix operator*(Matrix a, Matrix b)
{
Matrix s(a.r, b.c);
for (int i = ; i < a.r; i++)
{
for (int k = ; k < a.c; k++)
{ //j, k交换顺序运行更快
for (int j = ; j < b.c; j++)
{
s.mat[i][j] = (s.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
}
}
}
return s;
} Matrix pow_mod(Matrix a, LL n)
{
Matrix ret(a.r, a.c);
for (int i = ; i < a.r; i++)
{
ret.mat[i][i] = ; //单位矩阵
}
Matrix tmp(a);
while (n)
{
if (n & )
ret = ret * tmp;
tmp = tmp * tmp;
n >>= ;
}
return ret;
} LL n, m; int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
cin >> n >> m;
if (n < m)
{
cout << << endl;
return ;
}
Matrix ori = Matrix(m, );
for (int i = ; i < m; i++)
{
ori.mat[i][] = unit;
}
Matrix A = Matrix(m, m);
A.mat[][] = unit;
A.mat[][m - ] = unit;
for (int i = ; i < m; i++)
{
A.mat[i][i - ] = unit;
}
Matrix ans = pow_mod(A, n - m + );
ori = ans * ori;
cout << ori.mat[][] << endl;
return ;
}

Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)的更多相关文章

  1. Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems(矩阵快速幂)

    题目传送门 题意: 一个魔法水晶可以分裂成m个水晶,求放满n个水晶的方案数(mol1e9+7) 思路: 线性dp,dp[i]=dp[i]+dp[i-m]; 由于n到1e18,所以要用到矩阵快速幂优化 ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  3. Educational Codeforces Round 60 (Rated for Div. 2) 题解

    Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...

  4. Educational Codeforces Round 60 (Rated for Div. 2)

    A. Best Subsegment 题意 找 连续区间的平均值  满足最大情况下的最长长度 思路:就是看有几个连续的最大值 #include<bits/stdc++.h> using n ...

  5. Educational Codeforces Round 60 (Rated for Div. 2)D(思维,DP,快速幂)

    #include <bits/stdc++.h>using namespace std;const long long mod = 1e9+7;unordered_map<long ...

  6. Educational Codeforces Round 60 (Rated for Div. 2)E(思维,哈希,字符串,交互)

    #include <bits/stdc++.h>using namespace std;int main(){ string t; cin>>t; int n=t.size() ...

  7. Educational Codeforces Round 60 (Rated for Div. 2) 即Codeforces Round 1117 C题 Magic Ship

    time limit per test 2 second memory limit per test 256 megabytes input standard inputoutput standard ...

  8. Educational Codeforces Round 60 (Rated for Div. 2) E. Decypher the String

    题目大意:这是一道交互题.给你一个长度为n的字符串,这个字符串是经过规则变换的,题目不告诉你变换规则,但是允许你提问3次:每次提问你给出一个长度为n的字符串,程序会返回按变换规则变换后的字符串,提问3 ...

  9. Educational Codeforces Round 76 (Rated for Div. 2) B. Magic Stick 水题

    B. Magic Stick Recently Petya walked in the forest and found a magic stick. Since Petya really likes ...

随机推荐

  1. nginx通过域名访问项目(不接项目名称),cookie丢失问题详解

    最近搞了个域名,想用它直接去访问Tomcat上部署的项目,开始一直必须加上项目名称,经过短暂配置,成功了. 访问一次,到达登陆页面,结果死活登录不进去,一直在登陆界面,原来是由于cookie丢失,现配 ...

  2. mysql用户创建授权

    创建用户: grant select,update,insert,delete,create,drop,alter,index on *.* to 'jyx_mysql'@'%' identified ...

  3. SOAP webserivce 和 RESTful webservice 对比及区别(转载)

    简单对象访问协议(Simple Object Access Protocol,SOAP)是一种基于 XML 的协议,可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP),简单邮件传 ...

  4. java日志框架log4j详细配置及与slf4j联合使用教程

    最后更新于2017年02月09日 一.log4j基本用法 首先,配置log4j的jar,maven工程配置以下依赖,非maven工程从maven仓库下载jar添加到“build path” <d ...

  5. 简单读!zookeeper单机模式的启动逻辑

    zk用处如此之多,以至于每个地方都要你理解zk原理! 请按如下操作姿势打开: 1. 打开zk的git仓库地址:https://github.com/apache/zookeeper , 确认过眼神,它 ...

  6. SmartSql 动态代理仓储

    SmartSql 动态代理仓储,一个高生产力的组件.该组件看似很难懂,实际上仅做了映射Statement,转发请求的功能.但却意义重大. SmartSql提供了一个通用泛型仓储接口 SmartSql. ...

  7. SLAM+语音机器人DIY系列:(二)ROS入门——10.在实际机器人上运行ROS高级功能预览

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  8. Centos7+LVS-NAT+apache实验

    一.简介 1.理论已经在上一篇博客简述,不了解得可以看看 https://www.cnblogs.com/zhangxingeng/p/10497279.html 2.LVS-NAT优缺点复习 关于这 ...

  9. sql小知识点

    1]sql去重复 select * from View where SfzId in ())

  10. maven的安装和环境配置

    一.下载maven Apache Maven下载地址:http://maven.apache.org/download.cgi 二.maven的安装 将下载好的安装文件解压到d盘根目录下即可(当然,这 ...