R语言︱异常值检验、离群点分析、异常值处理
每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~
———————————————————————————
笔者寄语:异常值处理一般分为以下几个步骤:异常值检测、异常值筛选、异常值处理。
其中异常值检测的方法主要有:箱型图、简单统计量(比如观察极值)
异常值处理方法主要有:删除法、插补法、替换法。
提到异常值不得不说一个词:鲁棒性。就是不受异常值影响,一般是鲁棒性高的数据,比较优质。
一、异常值检验
异常值大概包括缺失值、离群值、重复值,数据不一致。
1、基本函数
summary可以显示每个变量的缺失值数量.
2、缺失值检验
关于缺失值的检测应该包括:缺失值数量、缺失值比例、缺失值与完整值数据筛选。
#缺失值解决方案 sum(complete.cases(saledata)) #is.na(saledata) sum(!complete.cases(saledata)) mean(!complete.cases(saledata)) #1/201数字,缺失值比例 saledata[!complete.cases(saledata),] #筛选出缺失值的数值
3、箱型图检验离群值
箱型图的检测包括:四分位数检测(箱型图自带)+1δ标准差上下+异常值数据点。
箱型图有一个非常好的地方是,boxplot之后,结果中会自带异常值,就是下面代码中的sp$out,这个是做箱型图,按照上下边界之外为异常值进行判定的。
上下边界,分别是Q3+(Q3-Q1)、Q1-(Q3-Q1)。
sp=boxplot(saledata$"销量",boxwex=0.7) title("销量异常值检测箱线图") xi=1.1 sd.s=sd(saledata[complete.cases(saledata),]$"销量") mn.s=mean(saledata[complete.cases(saledata),]$"销量") points(xi,mn.s,col="red",pch=18) arrows(xi, mn.s - sd.s, xi, mn.s + sd.s, code = 3, col = "pink", angle = 75, length = .1) text(rep(c(1.05,1.05,0.95,0.95),length=length(sp$out)),labels=sp$out[order(sp$out)], sp$out[order(sp$out)]+rep(c(150,-150,150,-150),length=length(sp$out)),col="red")
代码中text函数的格式为text(x,label,y,col);points加入均值点;arrows加入均值上下1δ标准差范围箭头。
箱型图还有等宽与等深分箱法,可见另外一个博客:R语言︱噪声数据处理、数据分组——分箱法(离散化、等级化)
4、数据去重
数据去重与数据分组合并存在一定区别,去重是纯粹的所有变量都是重复的,而数据分组合并可能是因为一些主键的重复。
数据去重包括重复检测(table、unique函数)以及重复数据处理(unique/duplicated)。
常见的有unique、数据框中duplicated函数,duplicated返回的是逻辑值。
二、异常值处理
常见的异常值处理办法是删除法、替代法(连续变量均值替代、离散变量用众数以及中位数替代)、插补法(回归插补、多重插补)
除了直接删除,可以先把异常值变成缺失值、然后进行后续缺失值补齐。
实践中,异常值处理,一般划分为NA缺失值或者返回公司进行数据修整(数据返修为主要方法)
1、异常值识别
利用图形——箱型图进行异常值检测。
#异常值识别 par(mfrow=c(1,2))#将绘图窗口划为1行两列,同时显示两图 dotchart(inputfile$sales)#绘制单变量散点图,多兰图 pc=boxplot(inputfile$sales,horizontal=T)#绘制水平箱形图
代码来自《R语言数据分析与挖掘实战》第四节。
2、盖帽法
整行替换数据框里99%以上和1%以下的点,将99%以上的点值=99%的点值;小于1%的点值=1%的点值。
(本图来自CDA DSC,L2-R语言课程,常老师所述)
#异常数据处理 q1<-quantile(result$tot_derog, 0.001) #取得时1%时的变量值 q99<-quantile(result$tot_derog, 0.999) #replacement has 1 row, data has 0 说明一个没换 result[result$tot_derog<q1,]$tot_derog<-q1 result[result$tot_derog>q99,]$tot_derog<-q99 summary(result$tot_derog) #盖帽法之后,查看数据情况 fix(inputfile)#表格形式呈现数据 which(inputfile$sales==6607.4)#可以找到极值点序号是啥
把缺失值数据集、非缺失值数据集分开。
#缺失值的处理 inputfile$date=as.numeric(inputfile$date)#将日期转换成数值型变量 sub=which(is.na(inputfile$sales))#识别缺失值所在行数 inputfile1=inputfile[-sub,]#将数据集分成完整数据和缺失数据两部分 inputfile2=inputfile[sub,]
3、噪声数据处理——分箱法
将连续变量等级化之后,不同的分位数的数据就会变成不同的等级数据,连续变量离散化了,消除了极值的影响。
4、异常值处理——均值替换
数据集分为缺失值、非缺失值两块内容。缺失值处理如果是连续变量,可以选择均值;离散变量,可以选择众数或者中位数。
计算非缺失值数据的均值,
然后赋值给缺失值数据。
#均值替换法处理缺失,结果转存 #思路:拆成两份,把缺失值一份用均值赋值,然后重新合起来 avg_sales=mean(inputfile1$sales)#求变量未缺失部分的均值 inputfile2$sales=rep(avg_sales,n)#用均值替换缺失 result2=rbind(inputfile1,inputfile2)#并入完成插补的数据
5、异常值处理——回归插补法
#回归插补法处理缺失,结果转存 model=lm(sales~date,data=inputfile1)#回归模型拟合 inputfile2$sales=predict(model,inputfile2)#模型预测 result3=rbind(inputfile1,inputfile2)
6、异常值处理——多重插补——mice包
注意:多重插补的处理有两个要点:先删除Y变量的缺失值然后插补
1、被解释变量有缺失值的观测不能填补,只能删除,不能自己乱补;
2、只对放入模型的解释变量进行插补。
比较详细的来介绍一下这个多重插补法。笔者整理了大致的步骤简介如下:
缺失数据集——MCMC估计插补成几个数据集——每个数据集进行插补建模(glm、lm模型)——将这些模型整合到一起(pool)——评价插补模型优劣(模型系数的t统计量)——输出完整数据集(compute)
步骤详细介绍:
函数mice()首先从一个包含缺失数据的数据框开始,然后返回一个包含多个(默认为5个)完整数据集的对象。
每个完整数据集都是通过对原始数据框中的缺失数据进行插补而生成的。 由于插补有随机的成分,因此每个完整数据集都略有不同。
其中,mice中使用决策树cart有以下几个要注意的地方:该方法只对数值变量进行插补,分类变量的缺失值保留,cart插补法一般不超过5k数据集。
然后, with()函数可依次对每个完整数据集应用统计模型(如线性模型或广义线性模型) ,
最后, pool()函数将这些单独的分析结果整合为一组结果。最终模型的标准误和p值都将准确地反映出由于缺失值和多重插补而产生的不确定性。
#多重插补法处理缺失,结果转存 library(lattice) #调入函数包 library(MASS) library(nnet) library(mice) #前三个包是mice的基础 imp=mice(inputfile,m=4) #4重插补,即生成4个无缺失数据集 fit=with(imp,lm(sales~date,data=inputfile))#选择插补模型 pooled=pool(fit) summary(pooled) result4=complete(imp,action=3)#选择第三个插补数据集作为结果
结果解读:
(1)imp对象中,包含了:每个变量缺失值个数信息、每个变量插补方式(PMM,预测均值法常见)、插补的变量有哪些、预测变量矩阵(在矩阵中,行代表插补变量,列代表为插补提供信息的变量, 1和0分别表示使用和未使用);
同时 利用这个代码imp$imp$sales 可以找到,每个插补数据集缺失值位置的数据补齐具体数值是啥。
> imp$imp$sales 1 2 3 4 9 3614.7 3393.1 4060.3 3393.1 15 2332.1 3614.7 3295.5 3614.7
(2)with对象。插补模型可以多样化,比如lm,glm都是可以直接应用进去,详情可见《R语言实战》第十五章;
(3)pool对象。summary之后,会出现lm模型系数,可以如果出现系数不显著,那么则需要考虑换插补模型;
(4)complete对象。m个完整插补数据集,同时可以利用此函数输出。
其他:
mice
包提供了一个很好的函数md.pattern()
,用它可以对缺失数据的模式有个更好的理解。还有一些可视化的界面,通过VIM、箱型图、lattice来展示缺失值情况。可见博客:在R中填充缺失数据—mice包
三、离群点检测
离群点检测与第二节异常值主要的区别在于,异常值针对单一变量,而离群值指的是很多变量综合考虑之后的异常值。下面介绍一种基于聚类+欧氏距离的离群点检测方法。
基于聚类的离群点检测的步骤如下:数据标准化——聚类——求每一类每一指标的均值点——每一类每一指标生成一个矩阵——计算欧式距离——画图判断。
Data=read.csv(".data.csv",header=T)[,2:4] Data=scale(Data) set.seed(12) km=kmeans(Data,center=3) print(km) km$centers #每一类的均值点 #各样本欧氏距离,每一行 x1=matrix(km$centers[1,], nrow = 940, ncol =3 , byrow = T) juli1=sqrt(rowSums((Data-x1)^2)) x2=matrix(km$centers[2,], nrow = 940, ncol =3 , byrow = T) juli2=sqrt(rowSums((Data-x2)^2)) x3=matrix(km$centers[3,], nrow = 940, ncol =3 , byrow = T) juli3=sqrt(rowSums((Data-x3)^2)) dist=data.frame(juli1,juli2,juli3) ##欧氏距离最小值 y=apply(dist, 1, min) plot(1:940,y,xlim=c(0,940),xlab="样本点",ylab="欧氏距离") points(which(y>2.5),y[which(y>2.5)],pch=19,col="red")
每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~
———————————————————————————
R语言︱异常值检验、离群点分析、异常值处理的更多相关文章
- R语言入门级实例——用igragh包分析社群
R语言入门级实例——用igragh包分析社群 引入—— 本文的主要目的是初步实现R的igraph包的基础功能,包括绘制关系网络图(social relationship).利用算法进行社群发现(com ...
- R语言结合概率统计的体系分析---数字特征
现在有一个人,如何对这个人怎么识别这个人?那么就对其存在的特征进行提取,比如,提取其身高,其相貌,其年龄,分析这些特征,从而确定了,这个人就是这个人,我们绝不会认错. 同理,对数据进行分析,也是提取出 ...
- R语言简单实现聚类分析计算与分析(基于系统聚类法)
聚类分析计算与分析(基于系统聚类法) 下面以一个具体的例子来实现实证分析.2008年我国其中31个省.市和自治区的农村居民家庭平均每人全年消费性支出. 根据原始数据对我国省份进行归类统计. 原始数据如 ...
- R语言︱词典型情感分析文本操作技巧汇总(打标签、词典与数据匹配等)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:情感分析中对文本处理的数据的小技巧要 ...
- R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...
- 大数据时代的精准数据挖掘——使用R语言
老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一 ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
- R语言︱处理缺失数据&&异常值检验、离群点分析、异常值处理
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数 ...
- R语言实战(五)方差分析与功效分析
本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ================================================================ ...
随机推荐
- 以C语言为例的程序性能优化 --《深入理解计算机系统》第五章读书笔记
其实大多数的编译器本身就能提供一些简单的优化,比如gcc就能通过使用 -O2 或者 -O3 的选项来优化程序.但编译器的优化始终也是有限,因为它必须小心翼翼保证优化过程不对程序的功能有改动.故而程序员 ...
- 对List中每个对象元素按时间顺序排序
需求: 需要对List中的每个User按照birthday顺序排序,时间由小到大排列. 代码实现: import java.text.SimpleDateFormat; import java.uti ...
- Sonar 数据库表关系整理一(续)
更多原创测试技术文章同步更新到微信公众号 :三国测,敬请扫码关注个人的微信号,感谢! 简介:Sonar平台是目前较为流行的静态代码扫描平台,为了便于使用以及自己二次开发,有必要对它的数据库结构进行学习 ...
- web开发过程中关于路径问题的总结
约束: 相对路径概念-./代表当前目录.../代表上级目录 示例的所有文件都基于http://127.0.0.1:8080/test路径开放,test为对应的contextPath 前端 HTML标签 ...
- git stash暂存文件
git stash 可用来暂存当前正在进行的工作, 比如想pull 最新代码,但又不想提交代码.先git stash暂存,pull之后,用git stash pop或者git stash apply取 ...
- 利用回调实现Java的异步调用
异步是指调用发出后,调用者不会立刻得到结果,而是在调用发出后,被调用者通知调用者,或通过回调函数处理这个调用. 回调简单地说就是B中有一个A,这样A在调用B的某个方法时实际上是调用到了自己的方法. 利 ...
- CF 716E. Digit Tree [点分治]
题意:一棵树,边上有一个个位数字,走一条路径会得到一个数字,求有多少路径得到的数字可以整除\(P\) 路径统计一般就是点分治了 \[ a*10^{deep} + b \ \equiv \pmod P\ ...
- OI常用读入方式效率测试
我来填坑了. 这次我用自己写的测试读入的程序来分别测试cin(不关闭流同步),scanf和读入优化的效率差别. 我们分别对三个阶段的数据量n进行测试,通过时间比对来观察性能的差异. n = 102 ...
- Go语言极速入门手册
Github: https://github.com/coderzh/CodeTips /* gotips_test.go: Golang速学速查速用代码手册 Source: github.com/c ...
- CentOS 6下编译安装MySQL 5.6
一:卸载旧版本 使用下面的命令检查是否安装有MySQL Server rpm -qa | grep mysql 有的话通过下面的命令来卸载掉 rpm -e mysql //普通删除模式 rpm -e ...