之前在学习了简单的API调用后,查看了几个知名网站的API调用方法,发现Google的API调用还是相对比较简单的。下面就从API key的获取、googlemaps的安装,再到实际使用做一下说明。
 
1.基于Python的Google MAPS服务:
Google目前在Maps方面开放的API有好几个,可以根据不同的需求进行使用:
 
2.系统需求:
Python 2.7及以上;
Google MAP API key
 
1) 访问Google控制台并登陆;

2) 点击左上角的项目进行选择或者创建新项目:
这里我选择了之前创建过的项目,可以点击+号新建
 
3) 点击"启用API和服务"开启你需要的API;

这里选择跟地图相关的API:
 

点击启用。
显示此界面就说明启用成功。
 
4) 创建API key;
点击左侧边栏中的"凭据"进行创建:

5) 限制访问IP(可选)
点击后面的修改按钮可以对密钥进行IP等设置:

4.安装googlemaps:
C:\Users\DEV>pip install -U googlemaps
Collecting googlemaps
  Downloading googlemaps-2.5.1.tar.gz
Collecting requests<3.0,>=2.11.1 (from googlemaps)
  Downloading requests-2.18.4-py2.py3-none-any.whl (88kB)
    100% |████████████████████████████████| 92kB 112kB/s
Collecting chardet<3.1.0,>=3.0.2 (from requests<3.0,>=2.11.1->googlemaps)
  Downloading chardet-3.0.4-py2.py3-none-any.whl (133kB)
    100% |████████████████████████████████| 143kB 121kB/s
Collecting idna<2.7,>=2.5 (from requests<3.0,>=2.11.1->googlemaps)
  Downloading idna-2.6-py2.py3-none-any.whl (56kB)
    100% |████████████████████████████████| 61kB 123kB/s
Collecting certifi>=2017.4.17 (from requests<3.0,>=2.11.1->googlemaps)
  Downloading certifi-2018.1.18-py2.py3-none-any.whl (151kB)
    100% |████████████████████████████████| 153kB 326kB/s
Collecting urllib3<1.23,>=1.21.1 (from requests<3.0,>=2.11.1->googlemaps)
  Downloading urllib3-1.22-py2.py3-none-any.whl (132kB)
    100% |████████████████████████████████| 133kB 216kB/s
Building wheels for collected packages: googlemaps
  Running setup.py bdist_wheel for googlemaps ... done
  Stored in directory: C:\Users\DEV\AppData\Local\pip\Cache\wheels\04\e8\d1\ae5577b5339873e6a5dd55141d56e507cf281b137ef0
9ba924
Successfully built googlemaps
Installing collected packages: chardet, idna, certifi, urllib3, requests, googlemaps
  Found existing installation: chardet 3.0.3
    Uninstalling chardet-3.0.3:
      Successfully uninstalled chardet-3.0.3
  Found existing installation: idna 2.5
    Uninstalling idna-2.5:
      Successfully uninstalled idna-2.5
  Found existing installation: requests 2.14.2
    Uninstalling requests-2.14.2:
      Successfully uninstalled requests-2.14.2
Successfully installed certifi-2018.1.18 chardet-3.0.4 googlemaps-2.5.1 idna-2.6 requests-2.18.4 urllib3-1.22
 
 
执行完上述操作后,我们就可以调用这些API来获取我们需要的数据了,先使用文档中的一个例子来调用试试:
import googlemaps
from datetime import datetime gmaps = googlemaps.Client(key='Add Your Key here') # Geocoding an address
geocode_result = gmaps.geocode('1600 Amphitheatre Parkway, Mountain View, CA')
print(geocode_result[0]['geometry']['location']) # Look up an address with reverse geocoding
reverse_geocode_result = gmaps.reverse_geocode((40.714224, -73.961452))
print(reverse_geocode_result[0]['address_components'][1]['long_name'])
 
上述例子调用了geocode API,并分别打印各自的返回值。
geocode()即地理编码,根据地址以json格式返回经纬度。
reverse_geocode()即反向地理编码,根据经纬度返回具体地址。
 
实际调用后,在API首页便可以看到调用的具体情况。
下面针对directions API进行进一步研究。
 
Directions API
Directions API可以用来计算两地点之间的路线,并可设置路径点及出行模式(公交、驾车、骑行、步行等)
先来看一个简单的调用例子,并分析返回的json数据的具体内容。
import googlemaps
from datetime import datetime gmaps = googlemaps.Client(key='Add Your Key here')
# Request directions via public transit
now = datetime.now()
directions_result = gmaps.directions("Sydney Town Hall",
"Parramatta, NSW",
mode="transit",
departure_time=now)
print(directions_result)
例子中gmaps.directions()函数的形参分别为:
起始地点(Sydney Town Hall), 目标地点(Parramatta, NSW), 出行模式(公交), 出发时间(即刻触发)
然后再来看看根据这个请求返回的数据:
第一次看时有点发晕,这么多数据啊,怎么这么复杂,该怎么搞?其实像这样将数据格式化后再分析,就比较清楚了。
'legs'中为具体的路径信息,总体结构如下:
legs: [{
    'arrival_time': {},     # 到达时间
    'departure_time': {},     # 出发时间(这两个时间在调用时只能指定一个,另一个通过路线规划进行预估)
    'distance': {},     # 两个地点之间基于路线的距离
    'duration': {},     # 需要花费的时间
    'end_address': '',     # 目的地地址
    'end_location': {},     # 目的地经纬度
    'start_address': {},     # 出发地地址
    'start_location': {},     # 出发地经纬度
    'steps': {},     # 具体的规划路线
    'traffic_speed_entry': [],
    'via_waypoint': []
}]
 
而在'steps'中,又细分为几段详细的路线(每一段的信息都在列表的字典元素中),并在每一步中给出了'html_instructions'指示信息,内容非常全:
steps: [
        {
            'distance':     # 第一段路线数据
            'duration':
            'end_location':
            'html_instructions':
            'polyline':
            'start_location':
            'steps': [     # 第一段路线的详细路径
                    {
                        'distance': {},     # 
                        'duration':
                        'end_location':
                        'html_instructions':
                        'polyline':
                        'start_location':
                        'travel_mode':
                    },
                    {
                        'distance': {},
                        ... ...
                    },
                    ... ...
                ],
            'travel_mode': ''
        },
        {
            'distance':     # 第二段路线数据
            ... ...
        },
        ... ...
]
可以看到实际返回的数据还是挺复杂的,但是也是非常详细,想要的数据基本上都在里面了。
 
单纯的获取这些零散数据是没有什么实际意义的,如果我们能基于现有的数据,或者用爬取的数据与API相结合,就能进行数据分析,并进一步得到一些结论。
根据经纬度值,让我联想到可以利用已有的出租车数据集,使用经纬度获取出租车的位置,并进行分析。
几个可用的数据集:
下面的数据使用的是Microsoft的T-Drive trajectory data数据(该数据集是由很多个.txt文件组成的,我在使用前先转换成了csv格式的文件)。
 
根据经纬度,从API获取两个节点开车所需的时间及距离,并作出图表,查看开车时间及距离各自所占的比重。
由于API的调用限制,我们先取前2000条的记录进行分析:
import googlemaps
from datetime import datetime
import os
import csv
import pandas as pd
import matplotlib.pyplot as plt
import math # 将已知的多个txt文件中的内容放到一个CSV文件下
def txt2Csv(dataPath, csvname):
fileList = os.listdir(dataPath)
csvFile = open(dataPath + '\\' + csvname, 'w+')
writer = csv.writer(csvFile)
for fileName in fileList:
with open(dataPath + '\\' + fileName) as fileObj:
lines = fileObj.readlines()
for line in lines:
line = line.split(',')
line[-1] = line[-1][0:-1]
writer.writerow((line))
csvFile.close() # 根据经纬度获取两地之间的距离及花费的时间
def getDistanceDuration(key, path, csvName):
gmaps = googlemaps.Client(key=key)
df = pd.read_csv(path + '\\' + csvName)
df.columns = ['id', 'time', 'longitude', 'latitude']
durationList = []
distanceList = []
try:
for i in range(1, 1000):
now = datetime.now()
# 调取google API的directions:
directions_result = gmaps.directions((df.iloc[i, 3], df.iloc[i, 2]),
(df.iloc[i+1, 3], df.iloc[i+1, 2]),
mode="driving",
departure_time=now)
# 按照返回的格式,找出distance及duration,追加到列表中并返回
distanceList.append(directions_result[0]['legs'][0]['distance']['value'])
durationList.append(directions_result[0]['legs'][0]['duration']['value'])
except googlemaps.exceptions._RetriableRequest:
pass
return distanceList, durationList path = 'D:\\Learnning\\python\\scrape\\taxiData\\T-drive Taxi Trajectories\\release\\taxi_log_2008_by_id'
txt2Csv(path, 'geodata.csv') distanceList, durationList = getDistanceDuration('AIzaSyD8X6tJx6Ap5TVHlqwSso8iTwZfDWcFsOA', path, 'geodata.csv')
# 对返回数据的单位做转换, 并使用math.ceil对数据向上取整
distanceList = [math.ceil(dis/1000) for dis in distanceList]
durationList = [math.ceil(dis/60) for dis in durationList] totalDistance = 0
totalDuration = 0
# 计算总路程,并画出每段路程的距离在总路程中的占比:
for distance in distanceList:
totalDistance += distance
distancePropo = [distance/totalDistance for distance in distanceList]
plt.bar(distanceList, distancePropo)
plt.title("Distance interval")
plt.xlabel("Km")
plt.ylabel("Proportion")
plt.show() # 计算总时间,并画出每段路程花费的时间在总时间中的占比:
for duration in durationList:
totalDuration += duration
durationPropo = [duration/totalDuration for duration in durationList]
plt.bar(durationList, durationPropo)
plt.title("Time interval")
plt.xlabel("Min")
plt.ylabel("Proportion")
plt.show()
得出的图像:
 
按时间分布:
 

按行驶距离分布:

具体的使用文档可参考:
 
 

Google Maps API的使用的更多相关文章

  1. Google Maps API V3 之绘图库 信息窗口

    Google官方教程: Google 地图 API V3 使用入门 Google 地图 API V3 针对移动设备进行开发 Google 地图 API V3 之事件 Google 地图 API V3 ...

  2. Google Maps API V3 之 图层

    Google官方教程: Google 地图 API V3 使用入门 Google 地图 API V3 针对移动设备进行开发 Google 地图 API V3 之事件 Google 地图 API V3 ...

  3. Google Maps API V3 之 路线服务

    Google官方教程: Google 地图 API V3 使用入门 Google 地图 API V3 针对移动设备进行开发 Google 地图 API V3 之事件 Google 地图 API V3 ...

  4. google maps api申请的问题

    现在已经改由统一的GOOGLE API控制台进行所有GOOGLE API的管理了. 方法是使用Google帐号登入 https://code.google.com/apis/console. 然后在所 ...

  5. Google maps API开发(一)(转)

    一.加载Google maps API <script type="text/javascript" src="http://ditu.google.com/map ...

  6. Google maps API开发(二)(转)

    这一篇主要实现怎么调用Google maps API中的地址解析核心类GClientGeocoder: 主要功能包括地址解析.反向解析.本地搜索.周边搜索等, 我这里主要有两个实例: 实例一.当你搜索 ...

  7. Google Maps API Web Services

    原文:Google Maps API Web Services 摘自:https://developers.google.com/maps/documentation/webservices/ Goo ...

  8. Google maps API开发

    原文:Google maps API开发 Google maps API开发(一) 最近做一个小东西用到google map,突击了一下,收获不小,把自己学习的一些小例子记录下来吧 一.加载Googl ...

  9. Google Maps API Key申请办法(最新)

    之前的Google Maps Api的API Key很容易申请,只需要按照一个简单的表单提交部署的网站地址即可,自动生成API Key并给出引用的路径. 但是最近在处理另外一个项目的时候发现之前的这种 ...

  10. 如何插入谷歌地图并获取javascript api 秘钥--Google Maps API error: MissingKeyMapError

    参考:https://blog.csdn.net/klsstt/article/details/51744866 Google Maps API error: MissingKeyMapError h ...

随机推荐

  1. iterator的romove方法的注意事项

    package cn.lonecloud.Iterator; import java.util.ArrayList; import java.util.Iterator; public class m ...

  2. 通过js区分移动端浏览器(微信浏览器、QQ浏览器、QQ内置浏览器)

    由于公司业务中涉及到一个分享指引功能,而像微信.QQ内置浏览器需要引导用户点击右上角进行操作,其他浏览器则引导点击浏览器下方进行操作,因此需要区分浏览器类型: 通过在页面alert(navigator ...

  3. 关于UIButton嵌入到UIView点击无反应问题的解决方法和delegate的简单用法示例(转载)

    做项目封装UIView的时候碰到的问题,没想到有个哥们儿还写成博客,特此收藏! 问题是这样的,几个界面用到同一个自定义返回按钮,于是就想着把这个按钮单独封装起来,添加一个UIView类,在里面自定义U ...

  4. python开发concurent.furtrue模块:concurent.furtrue的多进程与多线程&协程

    一,concurent.furtrue进程池和线程池 1.1 concurent.furtrue 开启进程,多进程&线程,多线程 # concurrent.futures创建并行的任务 # 进 ...

  5. 通讯服务类API调用的代码示例合集:短信服务、手机号归属地查询、电信基站查询等

    以下示例代码适用于 www.apishop.net 网站下的API,使用本文提及的接口调用代码示例前,您需要先申请相应的API服务. 短信服务:通知类和验证码短信,全国三网合一通道,5秒内到达,费用低 ...

  6. hashtable的运用实例

    #include <hash_set> #include <iostream> using namespace std; int main() { hashtable<i ...

  7. zTree实现地市县三级级联Service接口测试

    zTree实现地市县三级级联Service接口测试 ProvinceServiceTest.java: /** * @Title:ProvinceServiceTest.java * @Package ...

  8. g++基本用法

    用法:g++[选项]文件... g++编译流程: main.cxx #include <iostream> using namespace std; int main(void) { co ...

  9. dtls_srtp学习笔记

    注:以下为rfc5764的学习笔记,不保证完全正确. DTLS-SRTP是DTLS的一个扩展,将SRTP加解密与DTLS的key交换和会话管理相结合.从SRTP的角度看,是为其提供一种新的key协商管 ...

  10. CSS开启硬件加速提高网站性能

    国外一篇文章,有点意思,转载过来,准备尝试下~ 中文地址:http://www.cnblogs.com/yzw7489757/ 原文地址:http://blog.teamtreehouse.com/i ...