快速排序及优化(Java实现)
一. 普通快速排序
找一个基准值base,然后一趟排序后让base左边的数都小于base,base右边的数都大于等于base。再分为两个子数组的排序。如此递归下去。
public class QuickSort { public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1);
} public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
if (left >= right) return;
int p = partition(arr, left, right);
sort(arr, left, p - 1);
sort(arr, p + 1, right);
} private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后基准值的下角标
} public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
} private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
} public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
二. 快速排序优化:随机选取基准值base
在数组几乎有序时,快排性能不好(因为每趟排序后,左右两个子递归规模相差悬殊,大的那部分最后很可能会达到O(n^2))。
解决:基准值随机地选取,而不是每次都取第一个数。这样就不会受“几乎有序的数组”的干扰了。但是对“几乎乱序的数组”的排序性能可能会稍微下降,至少多了排序前交换的那部分,乱序时这个交换没有意义...有很多“运气”成分..
public class QuickSort { public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1);
} public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
if (left >= right) return;
int p = partition(arr, left, right);
sort(arr, left, p - 1);
sort(arr, p + 1, right);
} private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr,left,(int)(Math.random()*(right - left + 1)+left)); T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
} public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
} private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
} public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
三. 快速排序继续优化:配合着使用插入排序
快排是不断减小问题规模来解决子问题的,需要不断递归。但是递归到规模足够小时,如果继续采用这种 不稳定+递归 的方式执行下去,效率不见得会很好。
所以当问题规模较小时,近乎有序时,插入排序表现的很好。Java自带的Arrays.sort()里经常能看到这样的注释:“Use insertion sort on tiny arrays”,“Insertion sort on smallest arrays”
public class QuickSort { public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
} /**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
if (right - left <= k) {
insertionSort(arr, left, right);
return;
}
int p = partition(arr, left, right);
sort(arr, left, p - 1, k);
sort(arr, p + 1, right, k);
} public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
} private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left)); T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
} public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
} private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
} public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
四. 快速排序继续优化:两路快排
在最开始的普通快速排序说过,让基准值base左边的都比base小,而base右边的都大于等于base。等于base的这些会聚集到右侧(或者稍微改改大小关系就会聚集到左侧)。总之就会聚集到一边。这样在数组中重复数字很多的时候,就又会导致两边子递归规模差距悬殊的情况。这时想把等于base的那些数分派到base两边,而不是让他们聚集到一起。
(注:测试代码的时候,最好把插入排序那部分注视掉,向我下面代码中那样...不然数据量小于k=16的时候执行的是插入排序.....)
public class QuickSort { public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
} /**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
// if (right - left <= k) {
// insertionSort(arr, left, right);
// return;
// } if (left >= right) return; int p = partition(arr, left, right);
sort(arr, left, p - 1, k);
sort(arr, p + 1, right, k);
} public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
} private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left)); T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序 int i = left + 1; //对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。 int j = right;//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。 while (true) {
//从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。
while (i <= right && arr[i].compareTo(base) < 0) i++; //从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。
while (j >= left && arr[j].compareTo(base) > 0) j--; if (i > j) {//虽说是i>j,但其实都是以j=i-1为条件结束的
break;
}
swap(arr, i++, j--);
} swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
} public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
} private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
} public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
五. 快速排序继续优化:两路快排 不用swap, 用直接赋值
上面的两路在找到大于base的值和小于base的值时,用的是swap()方法来进行交换。两数交换涉及到第三个变量temp的操作,多了读写操作。接下来用直接赋值的方法,把小于的放到右边,大于的放到左边,当i和j相遇时,那个位置就是base该放的地方。至此一趟完成。递归即可。
public class QuickSort { public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
} /**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
// if (right - left <= k) {
// insertionSort(arr, left, right);
// return;
// } if (left >= right) return; int p = partition(arr, left, right);
sort(arr, left, p - 1, k);
sort(arr, p + 1, right, k);
} public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
} private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left)); T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序 int i = left; //对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。 int j = right;//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。 while (i < j) {
//从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。
while (j > i && arr[j].compareTo(base) > 0) j--; arr[i] = arr[j]; //从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。
while (i < j && arr[i].compareTo(base) < 0) i++; arr[j] = arr[i]; } arr[j] = base;
return j;//返回一躺排序后,基准值的下角标
} public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
} private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
} public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr); printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
六. 快速排序继续优化:当大量数据,且重复数多时,用三路快排
把数组分为三路,第一路都比base小,第二路都等于base,第三路都大于base。
用指针从前到后扫描,如果:
1.cur指向的数小于base,那么:交换arr[cur]和arr[i]的值,然后i++,cur++。
2.cur指向的数等于base, 那么:cur++
3.cur指向的数大于base,那么:交换arr[cur]和arr[j]的值,然后j--。
当cur > j的时候说明三路都已经完成。
public class QuickSort { public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
} /**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
// if (right - left <= k) {
// insertionSort(arr, left, right);
// return;
// } if (left >= right) return;
int[] ret = partition(arr, left, right);
sort(arr, left, ret[0], k);
sort(arr, ret[1], right, k);
} public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
} /**
* @param arr 待排序的数组
* @param left 待排序数组的左边界
* @param right 待排序数组的右边界
* @param <T> 泛型
* @return
*/
private static <T extends Comparable<? super T>> int[] partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left)); T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序 //三路快排分为下面这三个路(区间)
int i = left; // left表示,[lleft...left) 左闭右开区间里的数都比base小
int j = right;// left表示,(rright...right] 左开右闭区间里的数都比base大
int cur = i;//用cur来遍历数组。[left...cur)左闭右开区间里的数都等于base while (cur <= j) {
if (arr[cur].compareTo(base) == 0) {
cur++;
} else if (arr[cur].compareTo(base) < 0) {
swap(arr, cur++, i++);
} else {
swap(arr, cur, j--);
}
}
return new int[]{i - 1, j + 1};//[i...j]都等于base,子问题就只需要解决i左边和j右边就行了
} public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
} private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
} public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr); printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
快速排序及优化(Java实现)的更多相关文章
- 怎么优化JAVA程序的执行效率和性能?
现在java程序已经够快的了,不过有时写出了的程序效率就不怎么样,很多细节值得我们注意,比如使用StringBuffer或者StringBuilder来拼接或者操作字符串就比直接使用String效率高 ...
- Tomcat 优化 java.lang.OutOfMemoryError: Java heap space 的解决方法
Tomcat 优化 java.lang.OutOfMemoryError: Java heap space 的解决方法 java.lang.OutOfMemoryError: Java heap sp ...
- jvm系列(十):如何优化Java GC「译」
本文由CrowHawk翻译,是Java GC调优的经典佳作. 本文翻译自Sangmin Lee发表在Cubrid上的"Become a Java GC Expert"系列文章的第三 ...
- jvm系列(七):如何优化Java GC「译」
本文由CrowHawk翻译,地址:如何优化Java GC「译」,是Java GC调优的经典佳作. Sangmin Lee发表在Cubrid上的”Become a Java GC Expert”系列文章 ...
- jvm系列(十):如何优化Java GC「
转自:https://www.cnblogs.com/ityouknow/p/7653129.html 本文由CrowHawk翻译,地址:如何优化Java GC「译」,是Java GC调优的经典佳作. ...
- 【Java】 大话数据结构(15) 排序算法(2) (快速排序及其优化)
本文根据<大话数据结构>一书,实现了Java版的快速排序. 更多:数据结构与算法合集 基本概念 基本思想:在每轮排序中,选取一个基准元素,其他元素中比基准元素小的排到数列的一边,大的排到数 ...
- 冒泡排序优化JAVA
本文对传统的冒泡排序进行了一些优化,减少了循环次数. 时间复杂度 若文件的初始状态是正序的,一趟扫描即可完成排序.所需的关键字比较次数 C 和记录移动次数 M 均达到最小值: C(min)=n-1 , ...
- 如何优化 Java 性能?
对于 Java 性能比较关心的同学大概都知道<Java Performance>这本书,一般而言,很多同学在日常写 Java Code 的时候很少去关心性能问题,但是在我们写 Code 的 ...
- 成为Java GC专家(3)—如何优化Java垃圾回收机制
为什么需要优化GC 或者说的更确切一些,对于基于Java的服务,是否有必要优化GC?应该说,对于所有的基于Java的服务,并不总是需要进行GC优化,但前提是所运行的基于Java的系统,包含了如下参数或 ...
随机推荐
- mysql数据库 调优
mysql调优硬件配置网络带宽mysql运行参数慢查询日志网络架构多实例(一台服务器上运行多个数据库服务)分库分表 当一台数据库服务器处理客户端的请求慢时,可能是哪些原因造成? 硬件配置低:(内存 c ...
- (1)常见O(n^2)排序算法解析
一.选择排序 1.原始数组 2.遍历数组找到最小值索引,并将最小值索引与当前遍历索引位置互换 3.确定最小位置值,进行下一次遍历 4.java代码实现 /** * author:sam * date: ...
- Ubuntu 11.04 NFS 配置
安装 NFS 相关组件 sudo apt-get install nfs-kernel-server 增加 NFS 目录 sudo gedit /etc/exports #在文件中添加如下内容 /va ...
- Windows下的Memcache安装:
Windows下的Memcache安装:1. 下载memcache的windows稳定版,解压放某个盘下面,比如在c:\memcached2. 在终端(也即cmd命令界面)下输入 'c:\memcac ...
- 【javascript】jQuery判断用户右击事件
jquery 判断用户是鼠标是右击还是左击, // 1 = 鼠标左键 left; 2 = 鼠标中键; 3 = 鼠标右键 $(document).mousedown(function(e) { if(3 ...
- AM335x(TQ335x)学习笔记——LCD驱动移植
TI的LCD控制器驱动是非常完善的,共通的地方已经由驱动封装好了,与按键一样,我们可以通过DTS配置完成LCD的显示.下面,我们来讨论下使用DTS方式配置内核完成LCD驱动的思路. (1)初步分析 由 ...
- C# GUID介绍和的使用
GUID(全局统一标识符)是指在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的.通常平台会提供生成GUID的API.生成算法很有意思,用到了以太网卡地址.纳秒级时间.芯片ID码和许多可 ...
- java特征
java的核心是面向对象,与之相对的是面向过程的编程,在对整个java编程没有足够的理解和运用的情况下恐怕没办法很好的理解这两个概念. 在我的初步理解中,写一个程序就例如做一件事情,面向过程的思想或许 ...
- DirectX--yuv420p上实现的字符叠加
unsigned char *pTemp; BYTE OsdY = 0;BYTE OsdU = 0;BYTE OsdV = 0; void OSDSetTextColor(BYTE OsdR, BYT ...
- hdu5751 Eades
今天热身考到FFT,完全忘光了,模板敲错了... 晚上温习下以前的题目 这题就是从最大值每次分割现在的区间,这样递归的区间最大值会更小,对于每种最大值都是卷积做 #include<bits/st ...