注册了博客园一晃有3个月了,同时接触机器学习也断断续续的算是有1个月了。今天就用机器学习神器sklearn包的相关内容作为我的开篇文章吧。

本文将对sklearn包中的数据集做一个系统介绍,并简单说一下它们的使用。

道行尚浅,如正文描述有误还望小伙伴不吝赐教,不胜感激,即刻进入正文。

首先,一般机器学习的建模步骤是:数据收集 -> 特征工程 -> 模型选择 -> 模型训练 -> 模型评估 -> 超参数调整 -> 模型预测 -> 模型保存

由此可见,拥有大量优质的数据是建模的必要条件。

在此默认你已经下载并安装了sklearn,并对其有了简单的了解。接下来就说一说sklearn中的数据集。

sklearn.datasets模块中包含了大量优质数据集,官网地址:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

该模块主要提供了直接导入、在线下载及本地计算机生成数据集的方法,可以通过dir(datasets)或help(datasets)命令查看该模块的详细信息。

不难发现,datasets主要为我们提供了三种方法来使用数据集:load_<dataset_name>、fetch_<dataset_name>及make_<dataset_name>

  • load系列,datasets.load_<dataset_name>:sklearn自带的可直接使用的小数据集(packaged dataset)

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 }
span.s1 { font: 12.0px ".PingFang SC" }

'load_boston', # 波士顿房价数据集,用于回归任务的数据集

'load_breast_cancer',  # 乳腺癌数据集,用于二分类任务的数据集

'load_diabetes',  # 糖尿病数据集,用于回归任务的数据集

'load_digits',  # 手写数字数据集,用于多分类任务的数据集

'load_files',  # 加载自己的原始数据

'load_iris',  # 鸢尾花数据集,用于多分类任务的数据集

'load_lfw_pairs',  # 人脸核实数据集(给定两张照片,用来预测这两幅图是否来自同一个人)

'load_lfw_people',  # 人脸鉴定数据集(给定一张照片,用来找到一个给定的训练集的人的名字)

'load_linnerud',  # 体能训练数据集,用于多变量回归任务的数据集,其中有两个小数据集:Excise是对3个训练变量的20次观测(体重,腰围,脉搏),physiological是对3个生理学变量的20次观测(引体向上,仰卧起坐,立定跳远)

'load_mlcomp',  # 从http://mlcomp.org下载的数据集

'load_sample_image',  # 一张图像(numpy数组格式)

'load_sample_images',  # 图像集,用于图像处理

'load_svmlight_file',

'load_svmlight_files',

  • fetch系列,datasets.fetch_<dataset_name>:支持在线下载的较大的数据集(Downloaded Dataset)

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 }
span.s1 { font: 12.0px ".PingFang SC" }

'fetch_20newsgroups', # 20个新闻组数据集,用于文本分类的数据集

'fetch_20newsgroups_vectorized', # 新闻分类数据集,其中包含train和test

'fetch_california_housing',

'fetch_covtype',

'fetch_kddcup99',

'fetch_lfw_pairs',

'fetch_lfw_people',

'fetch_mldata',

'fetch_olivetti_faces',

'fetch_rcv1',

'fetch_species_distributions',

  • make系列,datasets.make_<dataset_name>:计算机生成的数据集(Generated Dataset)

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 }
span.s1 { font: 12.0px ".PingFang SC" }

'make_biclusters',

'make_blobs',

'make_checkerboard',

'make_circles',

'make_classification',

'make_friedman1',

'make_friedman2',

'make_friedman3',

'make_gaussian_quantiles',

'make_hastie_10_2',

'make_low_rank_matrix',

'make_moons',

'make_multilabel_classification',

'make_regression',

'make_s_curve',

'make_sparse_coded_signal',

'make_sparse_spd_matrix',

'make_sparse_uncorrelated',

'make_spd_matrix',

'make_swiss_roll'

现在我们已经大致了解了这些数据集,如果想要使用它们,只需要三个小步骤(此处以小数据集iris为例):

  1. 引入sklearn.datasets模块

    from sklearn import datasets
  2. 导入数据集并实例化一个对象iris
    iris = datasets.load_iris()
  3. 使用shape方法查看数据集
    n_samples, n_features = iris.data.shape
    print("Number of sample:", n_samples)
    print("Number of feature:", n_features)
  4. 运行结果如下,数据集的标准形状(shape)为二维数组(samples, features),其中n_samples表示数据集大小,n_features表示其中特征向量的维数

       

     这个结果表示iris数据集含有150个数据样本,每个数据样本是一个4维的特征向量。

接下来我们就可以使用这个数据集了,一般情况下,将iris.data作为样本特征向量,将iris.target作为样本label

sklearn包中有哪些数据集你都知道吗?的更多相关文章

  1. 机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集

    机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集   选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀. ...

  2. sklearn包学习

    1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...

  3. Composer安装php插件包中有哪些坑

    Composer安装php插件包中有哪些坑 一.总结 一句话总结:不要盲从扩展官方的composer安装命令,有时候也会出错 我们经常要往现有的项目中添加扩展包,有时候因为文档的错误引导,如下图来自 ...

  4. Python: 安装 sklearn 包出现错误的解决方法

    今天在安装 Python 的 sklearn 包时出现了 Cannot uninstall 'numpy' 和 Cannot uninstall 'scipy' 错误,下面记录了我尝试了很多网上的方法 ...

  5. sklearn包源码分析(二)——ensemble(未完成)

    网络资源 sklearn包tree模型importance解析

  6. sklearn中各种分类器回归器都适用于什么样的数据呢?

    作者:匿名用户链接:https://www.zhihu.com/question/52992079/answer/156294774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  7. sklearn包源码分析(一)--neighbors

    python如何查看内置函数的用法及其源码? 在anaconda的安装目录下,有一块会放着我们安装的所有包,在里面可以找到所有的包 找到scikit learn包,进入 这里面又有了多个子包,每个子包 ...

  8. 在sklearn上读取人脸数据集保存图片到本地

    程序如下: # -*- coding: utf-8 -*- """ Created on Sat Oct 31 17:36:56 2015 ""&qu ...

  9. 调用sklearn包中的PLA算法[转载]

    转自:https://blog.csdn.net/u010626937/article/details/72896144#commentBox 1.Python的机器学习包sklearn中也包含了感知 ...

随机推荐

  1. mysql 导出每张表中的100条数据..............

    windows下配好MYSQL 环境变量,cmd 然后: mysqldump -uroot -p123 [数据库名]--where "1=1 limit 100" --lock-a ...

  2. Ansible自动化运维笔记3(playbook)

    1.基本语法 playbook文件格式为yaml语法.示例如下: 1.1 nginx.yaml --- - hosts: all tasks: - name: Install Nginx Packag ...

  3. LitePal——Android数据库框架完整使用手册

    LitePal for Android LitePal是一个开源的Android库,使开发人员使用SQLite数据库非常简单.您无需编写任何SQL语句就可以完成大部分数据库操作,包括创建或升级表,增. ...

  4. 转:HTTPS 协议

    作者简介:罗成 腾讯云资深研发工程师 一.微信小程序接入的困境 农历新年将至,微信小程序也如期发布,开发者在接入微信小程序过程中,会遇到以下问题: 小程序要求必须通过 HTTPS 完成与服务端通信,若 ...

  5. Apple 内购

    关于内购所需东西: 1.测试开发证书:需要打开in-app-purchase,绑定bundleid:com.aragon.TexasPoker 2.iTunes connect 里添加内购应用: 1& ...

  6. Linux SendMail发送邮件失败诊断案例(四)

    最近又碰到一起Linux下SendMail发送邮件失败的案例,邮件发送后,邮箱收不到具体邮件, 查看日志/var/log/maillog 发现有"DSN: User unknown" ...

  7. error: No curses/termcap library found的解决办法

    mysql版本:5.1.30 已经不记得这次是第几次安装mysql了,遇到这个问题倒是第一次. 之前在tar,./configure,make,make install 经典四步时,从来没有想过其中的 ...

  8. freemarker报错之十三

    1.错误描述 freemarker.core.ParseException: Token manager error: freemarker.core.TokenMgrError: Unknown d ...

  9. Error:dijit.tree.TreeStoreModel:root query returned 0 items

    1.错误描述 error loading root:                                            Tree.js(第341行) Error:dijit.tre ...

  10. CentOS配置日志集中管理

    ①首先有产生日志的服务器和储存日志的服务器 ②产生.接收日志的服务器都必须安装rsyslog服务(可以通过yum.rpm.源码包安装),rsyslog支持C/S模式 ③日志存储服务器需要编辑rsysl ...