[LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Note:
- The matrix is only modifiable by the update function.
- You may assume the number of calls to update and sumRegion function is distributed evenly.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
这道题让我们求二维区域和检索,而且告诉我们数组中的值可能变化,这是之前那道Range Sum Query 2D - Immutable的拓展,由于我们之前做过一维数组的可变和不可变的情况Range Sum Query - Mutable和Range Sum Query - Immutable,那么为了能够通过OJ,我们还是需要用到树状数组Binary Indexed Tree(参见Range Sum Query - Mutable),其查询和修改的复杂度均为O(logn),那么我们还是要建立树状数组,我们根据数组中的每一个位置,建立一个二维的树状数组,然后还需要一个getSum函数,以便求得从(0, 0)到(i, j)的区间的数字和,然后在求某一个区间和时,就利用其四个顶点的区间和关系可以快速求出,参见代码如下:
解法一:
// Binary Indexed Tree
class NumMatrix {
public:
NumMatrix(vector<vector<int>> &matrix) {
if (matrix.empty() || matrix[].empty()) return;
mat.resize(matrix.size() + , vector<int>(matrix[].size() + , ));
bit.resize(matrix.size() + , vector<int>(matrix[].size() + , ));
for (int i = ; i < matrix.size(); ++i) {
for (int j = ; j < matrix[i].size(); ++j) {
update(i, j, matrix[i][j]);
}
}
} void update(int row, int col, int val) {
int diff = val - mat[row + ][col + ];
for (int i = row + ; i < mat.size(); i += i&-i) {
for (int j = col + ; j < mat[i].size(); j += j&-j) {
bit[i][j] += diff;
}
}
mat[row + ][col + ] = val;
} int sumRegion(int row1, int col1, int row2, int col2) {
return getSum(row2 + , col2 + ) - getSum(row1, col2 + ) - getSum(row2 + , col1) + getSum(row1, col1);
} int getSum(int row, int col) {
int res = ;
for (int i = row; i > ; i -= i&-i) {
for (int j = col; j > ; j -= j&-j) {
res += bit[i][j];
}
}
return res;
} private:
vector<vector<int>> mat;
vector<vector<int>> bit;
};
我在网上还看到了另一种解法,这种解法并没有用到树状数组,而是利用了列之和,所谓列之和,就是(i, j)就是(0, j) + (1, j) + ... + (i, j) 之和,相当于把很多个一维的区间之和拼到了一起,那么我们在构造函数中需要建立起这样一个列之和矩阵,然后再更新某一个位置时,我们只需要将该列中改变的位置下面的所有数字更新一下即可,而在求某个区间和时,只要将相差的各列中对应的起始和结束的行上的值的差值累加起来即可,参见代码如下:
解法二:
// Column Sum
class NumMatrix {
public:
NumMatrix(vector<vector<int>> &matrix) {
if (matrix.empty() || matrix[].empty()) return;
mat = matrix;
colSum.resize(matrix.size() + , vector<int>(matrix[].size(), ));
for (int i = ; i < colSum.size(); ++i) {
for (int j = ; j < colSum[].size(); ++j) {
colSum[i][j] = colSum[i - ][j] + matrix[i - ][j];
}
}
} void update(int row, int col, int val) {
for (int i = row + ; i < colSum.size(); ++i) {
colSum[i][col] += val - mat[row][col];
}
mat[row][col] = val;
} int sumRegion(int row1, int col1, int row2, int col2) {
int res = ;
for (int j = col1; j <= col2; ++j) {
res += colSum[row2 + ][j] - colSum[row1][j];
}
return res;
} private:
vector<vector<int>> mat;
vector<vector<int>> colSum;
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/308
类似题目:
Range Sum Query 2D - Immutable
参考资料:
https://leetcode.com/problems/range-sum-query-2d-mutable/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变的更多相关文章
- [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)
题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...
- 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...
- Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- LeetCode Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- Range Sum Query 2D - Mutable & Immutable
Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...
- [Locked] Range Sum Query 2D - Mutable
Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...
随机推荐
- OCP考点实战演练02-日常维护篇
本系列宗旨:真正掌握OCP考试中所考察的技能,坚决不做Paper OCP! 实验环境:RHEL 6.4 + Oracle 11.2.0.4 OCP考点实战演练02-日常维护篇 1.数据库体系结构和AS ...
- 计算机网络学习笔记--网络层之IP地址与子网
IPv4地址: 我们知道在网络层(TCP/IP体系结构的网际互联层),最重要的一个协议就是IP协议,现在正处于IPv4和IPv6的过渡时期,但目前来说,IPv4仍为主流,所以主要讲Ipv4. IP地址 ...
- 分布式系统理论进阶 - Paxos变种和优化
引言 <分布式系统理论进阶 - Paxos>中我们了解了Basic Paxos.Multi Paxos的基本原理,但如果想把Paxos应用于工程实践,了解基本原理还不够. 有很多基于Pax ...
- Python笔记之不可不知
Python软件已经安装成功有很长一段时间了,也即或多或少的了解Python似乎也很长时间了,也是偏于各种借口,才在现在开始写点总结.起初接触Python是因为公司项目中需要利用Python来测试开发 ...
- ASP.NET Core 中文文档 第三章 原理(13)管理应用程序状态
原文:Managing Application State 作者:Steve Smith 翻译:姚阿勇(Dr.Yao) 校对:高嵩 在 ASP.NET Core 中,有多种途径可以对应用程序的状态进行 ...
- 在项目中同时使用Objective-C和Swift
苹果发布的Swift语言可以和之前的Objective-C语言同时存在于一个项目中. 可能有人会认为是同一个类文件中既可以有Objective-C也可以有Swift,这是不对的.同一个类文件或同一个代 ...
- 让Lua自己把文件夹下面的所有文件自动加载起来吧
没有想到我也做了一回标题党.其实这里边说的自动还是有夸大其词的部分.其实只是指定文件夹,然后根据指定文件夹数据,加载目录下边的内容而已. 怎么来进行Lua文件的加载 一般情况下,相关的功能需要给他创建 ...
- .NET 实现并行的几种方式(一)
好久没有更新了,今天来一篇,算是<同步与异步>系列的开篇吧,加油,坚持下去(PS:越来越懒了). 一.Thread 利用Thread 可以直接创建和控制线程,在我的认知里它是最古老的技术了 ...
- C# 本质论 第一章 C#概述
学习新语言最好的办法就是动手写代码. 库(或称为类库)的文件扩展名是.dll,其中dll代表"动态链接库(Dynamic Link Library)". 不要在标识符中使用单词缩写 ...
- 深入Collection集合
List集合 一.ArraryList: 最基本的集合不多做介绍 二.Vector Vector cn=new Vector(); A:有特有功能 a:添加 public void ad ...