http://codevs.cn/problem/1283/

题目描述 Description

给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap2,Ap3,…ApLen 是一个等差序列。

 
输入描述 Input Description

输入的第一行包含一个整数 T,表示组数。

下接 T 组数据,每组第一行一个整数 N,每组第二行为一个 1 到 N 的排列, 数字两两之间用空格隔开。

 
输出描述 Output Description

对于每组数据,如果存在一个等差子序列,则输出一行“Y”,否则输出一 行“N”。

 
样例输入 Sample Input

2

3

1 3 2

3

3 2 1

 
样例输出 Sample Output

N

Y

 
数据范围及提示 Data Size & Hint

对于5%的数据,N<=100,对于30%的数据,N<=1000,对于100%的数据,N<=10000,T<=7

线段树+hash

首先要注意的是这个排列是1到n的排列

然后当然是找3个数形成等差子序列

暴力:枚举中间的数,枚举左边的数,枚举右边的数,看是否满足 2*mid=l+r

O(n³)

继续想,因为保证排列是1到n

所以对于一个数x,若以x为mid能形成等差子序列,那么另外两个数一定在x两侧

即从左往右枚举,当枚举到mid时,能早就枚举到了l,不能枚举到r

可以用0,1表示这个数是否被枚举到

举个例子:

3 6 1 2 4 5

当枚举到第5个数4时,0 1序列为

1 1 1 1 0 1

4的左边分别是1和0,说明枚举到4时,3已经被枚举到了,5还没有被枚举

但这样仍然要枚举,没有减少时间复杂度

如何去掉枚举的过程?

继续想,发现我们要比较的是mid左右的两个对称区间

举个例子:

1 8 3 6 5 7 4 2

当枚举到3时,0 1序列为:

1 0 1 0 0 0 0 1

我们实际需要的是判断2和4的01序列是否相等,1和5的01序列是否相等

因为是对称的

可以转化为判断区间[1,2]和区间[5,4](注意这里是[5,4],不是[4,5])是否相等

线段树维护区间正序哈希值和倒序哈希值,即可log判断

总复杂度:O(nlogn)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 10001
#define LL unsigned long long
using namespace std;
int T,n,x,len;
bool ok;
LL bit[N],hash[N*],anti_hash[N*],r1,r2;
struct TREE
{
public:
void up(int k,int l,int r)
{
hash[k]=hash[k<<]*bit[r-(l+r>>)]+hash[k<<|];
anti_hash[k]=anti_hash[k<<|]*bit[(l+r>>)-l+]+anti_hash[k<<];
}
void change(int k,int l,int r,int pos)
{
if(l==r)
{
anti_hash[k]=hash[k]=;
return;
}
int mid=l+r>>;
if(pos<=mid) change(k<<,l,mid,pos);
else change(k<<|,mid+,r,pos);
up(k,l,r);
}
LL query(int k,int l,int r,int opl,int opr,int w)
{
if(l>=opl&&r<=opr) return w== ? hash[k]:anti_hash[k];
int mid=l+r>>;
if(opr<=mid) return query(k<<,l,mid,opl,opr,w);
else if(opl>mid) return query(k<<|,mid+,r,opl,opr,w);
else if(w==) return query(k<<,l,mid,opl,mid,w)*bit[opr-mid]+query(k<<|,mid+,r,mid+,opr,w);
else return query(k<<|,mid+,r,mid+,opr,w)*bit[mid-opl+]+query(k<<,l,mid,opl,mid,w);
}
void solve(int i)
{
len=min(i-,n-i);
r1=query(,,n,i-len,i-,);
r2=query(,,n,i+,i+len,);
if(r1!=r2) ok=true;
}
}tree;
int main()
{
bit[]=; for(int i=;i<N;i++) bit[i]=bit[i-]*;
scanf("%d",&T);
while(T--)
{
memset(hash,,sizeof(hash));
memset(anti_hash,,sizeof(anti_hash));
scanf("%d",&n);
ok=false;
for(int i=;i<=n;i++)
{
scanf("%d",&x);
if(!ok)
{
tree.change(,,n,x);
if(x!=&&x!=n) tree.solve(x);
}
}
if(ok) puts("Y");
else puts("N");
}
}

codevs 1283 等差子序列的更多相关文章

  1. 1893. [国家集训队2011]等差子序列(bitset)

    ★★   输入文件:nt2011_sequence.in   输出文件:nt2011_sequence.out   简单对比时间限制:0.3 s   内存限制:512 MB [试题来源] 2011中国 ...

  2. BZOJ 2124: 等差子序列

    Sol 线段树+Hash. 首先暴力 等差子序列至少3项就可以了,就枚举中项,枚举公差就可以了,只需要一个数在中项前出现,另一个数在中项前没出现过就可以了.复杂度 \(O(n^2)\) 然后我想了一个 ...

  3. [bzoj2124]等差子序列(hash+树状数组)

    我又来更博啦     2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 941  Solved: 348[Submit][Statu ...

  4. 2124: 等差子序列 - BZOJ

    Description 给一个1到N的排列{Ai},询问是否存在1<=p1=3),使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一个整数T,表示组数.下接 ...

  5. BZOJ 2124等差子序列 线段树&&hash

    [题目描述 Description] 给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len& ...

  6. bzoj2124 等差子序列(hash+线段树)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 719  Solved: 261[Submit][Status][Discuss] ...

  7. BZOJ_2124_等差子序列_线段树+Hash

    BZOJ_2124_等差子序列_线段树+Hash Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pL ...

  8. P2757 [国家集训队]等差子序列

    P2757 [国家集训队]等差子序列 题目传送门 推荐一篇好题解 此题要求我们在一个序列中找出一个等差子序列. 显然,我们只需要考虑子序列长度len=3的情况,因为在长度为4的子序列中必定有一个长度为 ...

  9. CF452F Permutations/Luogu2757 等差子序列 树状数组、Hash

    传送门--Luogu 传送门--Codeforces 如果存在长度\(>3\)的等差子序列,那么一定存在长度\(=3\)的等差子序列,所以我们只需要找长度为\(3\)的等差子序列.可以枚举等差子 ...

随机推荐

  1. 【CF932G】Palindrome Partition(回文树,动态规划)

    [CF932G]Palindrome Partition(回文树,动态规划) 题面 CF 翻译: 给定一个串,把串分为偶数段 假设分为了\(s1,s2,s3....sk\) 求,满足\(s_1=s_k ...

  2. Bzoj4566:[HAOI2016]找相同字符

    题面 Bzoj Sol 两个串拼在一起后求出后缀数组 然后显然的\(n^2\)暴力,就是直接枚举求\(LCP\) 又由于扫的时候是对\(height\)取\(min\) 那么可以用单调栈维护每一段的贡 ...

  3. LightOJ1370 Bi-shoe and Phi-shoe

    题意 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. Solution 线性筛出phi,把询问数组排序搞就行了 # include <bits/stdc ...

  4. Vue的组件为什么要export default

    Vue 的模块机制 Vue 是通过 webpack 实现的模块化,因此可以使用 import 来引入模块,例如: 此外,你还可以在bulid/webpack.base.conf.js文件中修改相关配置 ...

  5. Java中高级面试题

    一.基础知识: 1)集合类:List和Set比较,各自的子类比较(ArrayList,Vector,LinkedList:HashSet,TreeSet): 2)HashMap的底层实现,之后会问Co ...

  6. 超文本传输​​协议 - HTTP / 1.1(Hypertext Transfer Protocol -- HTTP/1.1)之方法定义(Method Definitions)

    9方法定义 下面定义了HTTP / 1.1的一组常用方法.尽管可以扩展这个集合,但是另外的方法不能假定为单独扩展的客户端和服务器共享相同的语义. 主机请求头域(14.23节)必须伴随所有的HTTP / ...

  7. Redis之List

    一.Redis之List简介 1. List是简单的字符串列表,按照插入顺序排列. 2. 一个列表最多可存储232-1个元素(40多亿). 二.Redis之List命令行操作 Lrange:获取列表指 ...

  8. TP5模型类关键字赋值

    在写项目过程中 开始的代码如下 $ms = new MStore(); $ms->userid = $userid; $ms->address = $mc->address; $ms ...

  9. JavaScript 变量屏蔽

    不同作用域中相同名称的变量就会触发变量屏蔽: { let x = {color:"blue"}; let y = x; let z = 3; { //重复定义x,所以对全局变量x进 ...

  10. WPF自学入门(七)WPF 初识Binding

    今天记录一下Binding的基础和具体的使用方法,说起这个Binding,在WPF中,Binding是很重要的特征,在传统的Windows软件来看,大多数都是UI驱动程序的模式,也可以说事件驱动程序, ...