BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
Description
B 君有两个好朋友,他们叫宁宁和冉冉。有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求
Input
一行三个整数 b;d;n
Output
一行一个数表示模 7528443412579576937 之后的结果。
Sample Input
Sample Output
HINT
其中 0<b^2< = d<(b+1)2< = 10^18,n< = 10^18,并且 b mod 2=1,d mod 4=1
$通过通项式可以求出递推式,具体的,
有递推式Ax_n+Bx_{n-1}+Cx_{n-2}=0$
$用Ax^{2}+Bx+C=0解出x_1,x_2,那么通项为S_n=(k_1*x_1)^{n}+(k_2*x_2)^{n}$
$首先设S_n=(\frac{b+\sqrt{d}}{2})^{n}+(\frac{b-\sqrt{d}}{2})^{n}$
$x_1=\frac{b+\sqrt{d}}{2},x_2=\frac{b-\sqrt{d}}{2}$
$A=1,B=b,C=\frac{b^{2}-d}{4}$
$之后就可以用矩阵乘法求S_n了,并且我们发现(\frac{b-\sqrt{d}}{2})^{n}的取值为[-1,1]$
$它对答案有贡献当且仅当n为偶数,b\not=\sqrt{d}$
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef unsigned long long ll;
typedef double du;
ll mod=7528443412579576937ll,b,d,n;
ll qc(ll x,ll y) {
ll re=0;
while(y>=1) {
if(y&1ll) re=(re+x)%mod;
x=(x+x)%mod;
y>>=1ll;
}
return re;
}
struct Mat {
ll v[2][2];
Mat(){memset(v,0,sizeof(v));}
Mat operator*(const Mat &x)const {
Mat re;int i,j,k;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
for(k=0;k<2;k++) {
re.v[i][j]=(re.v[i][j]+qc(v[i][k],x.v[k][j]))%mod;
}
}
}
return re;
}
};
Mat qp(Mat x,ll y) {
Mat I;
I.v[0][0]=I.v[1][1]=1;
while(y>=1) {
if(y&1ll) I=I*x;
x=x*x;
y>>=1ll;
}
return I;
}
int main() {
scanf("%llu%llu%llu",&b,&d,&n);
Mat x;
x.v[0][0]=0; x.v[0][1]=(d-b*b)/4; x.v[1][0]=1; x.v[1][1]=b;
Mat T=qp(x,n);
ll ans=(qc(2,T.v[0][0])+qc(b,T.v[1][0]))%mod;
if(d!=b*b&&n%2==0) ans--;
printf("%llu\n",ans);
}
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法的更多相关文章
- 【bzoj4002】[JLOI2015]有意义的字符串 数论+矩阵乘法
题目描述 B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 输入 一行三个整数 b;d;n 输出 一行一个数表示模 7528443412579576937 ...
- 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...
- 【BZOJ4002】[JLOI2015]有意义的字符串 数学
[BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...
- [JLOI2015]有意义的字符串
4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1000 Solved: 436[Submit][St ...
- B20J_1297_[SCOI2009]迷路_矩阵乘法
B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ_5015_[Snoi2017]礼物_矩阵乘法
BZOJ_5015_[Snoi2017]礼物_矩阵乘法 Description 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第 一个朋友会带给他 ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法 Description 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛 ...
随机推荐
- Python_PyMySQL数据库操作
连接数据库: conn=pymysql.connect(host=,user=',charset='utf8') 建立游标: cur = conn.cursor() 创建一个名字叫 lj 的数据库: ...
- List集合中元素排序
应用场景: 在开发中经常遇到要对List<Object>集合进行排序,并且是根据集合中的对象的某个属性来进行排序 --------以下就此做出的解决方案 public static ...
- Strom topology 设计的演进
场景:采集日志数据,日志数据有多个字段组成,需求是根据日志数据中的N个字段(维度),去统计指标数据(个数.平均值)等.
- InnoDB的4个特性
innodb 的四个特性 insert buffer innodb使用insert buffer"欺骗"数据库:对于为非唯一索引,辅助索引的修改操作并非实时更新索引的叶子页,而是把 ...
- Neo4j安装后的密码修改
首先默认用户名/密码是neo4j/neo4j. 在安全验证打开的时候,你访问服务器/db/data之类的地址可能会提示您以下信息: { "password_change" : &q ...
- MQTT入手笔记
MQTT服务官网:http://mosquitto.org/download/ 在unix系统按照以下步骤运行并启动mqtt服务: 1. # 下载源代码包wget http://mosquitto.o ...
- break-跳出内循环
i = 1 j = 1 while i <= 10: print('第%d个碗' % i) while j <= 10: if j == 5: break else: print('这是内 ...
- NetCore版RPC框架NewLife.ApiServer
微服务和消息队列的基础都是RPC框架,比较有名的有WCF.gRPC.Dubbo等,我们的NewLife.ApiServer建立在网络库NewLife.Net之上,支持.Net Core,追求轻量级和高 ...
- Python3 urllib.request库的基本使用
Python3 urllib.request库的基本使用 所谓网页抓取,就是把URL地址中指定的网络资源从网络流中读取出来,保存到本地. 在Python中有很多库可以用来抓取网页,我们先学习urlli ...
- vue实现双向数据绑定的原理
vue实现双向数据绑定的原理就是利用了 Object.defineProperty() 这个方法重新定义了对象获取属性值(get)和设置属性值(set)的操作来实现的. 在MDN上对该方法的说明是:O ...