BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
Description
B 君有两个好朋友,他们叫宁宁和冉冉。有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求
.png)
Input
一行三个整数 b;d;n
Output
一行一个数表示模 7528443412579576937 之后的结果。
Sample Input
Sample Output
HINT
其中 0<b^2< = d<(b+1)2< = 10^18,n< = 10^18,并且 b mod 2=1,d mod 4=1
$通过通项式可以求出递推式,具体的,
有递推式Ax_n+Bx_{n-1}+Cx_{n-2}=0$
$用Ax^{2}+Bx+C=0解出x_1,x_2,那么通项为S_n=(k_1*x_1)^{n}+(k_2*x_2)^{n}$
$首先设S_n=(\frac{b+\sqrt{d}}{2})^{n}+(\frac{b-\sqrt{d}}{2})^{n}$
$x_1=\frac{b+\sqrt{d}}{2},x_2=\frac{b-\sqrt{d}}{2}$
$A=1,B=b,C=\frac{b^{2}-d}{4}$
$之后就可以用矩阵乘法求S_n了,并且我们发现(\frac{b-\sqrt{d}}{2})^{n}的取值为[-1,1]$
$它对答案有贡献当且仅当n为偶数,b\not=\sqrt{d}$
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef unsigned long long ll;
typedef double du;
ll mod=7528443412579576937ll,b,d,n;
ll qc(ll x,ll y) {
ll re=0;
while(y>=1) {
if(y&1ll) re=(re+x)%mod;
x=(x+x)%mod;
y>>=1ll;
}
return re;
}
struct Mat {
ll v[2][2];
Mat(){memset(v,0,sizeof(v));}
Mat operator*(const Mat &x)const {
Mat re;int i,j,k;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
for(k=0;k<2;k++) {
re.v[i][j]=(re.v[i][j]+qc(v[i][k],x.v[k][j]))%mod;
}
}
}
return re;
}
};
Mat qp(Mat x,ll y) {
Mat I;
I.v[0][0]=I.v[1][1]=1;
while(y>=1) {
if(y&1ll) I=I*x;
x=x*x;
y>>=1ll;
}
return I;
}
int main() {
scanf("%llu%llu%llu",&b,&d,&n);
Mat x;
x.v[0][0]=0; x.v[0][1]=(d-b*b)/4; x.v[1][0]=1; x.v[1][1]=b;
Mat T=qp(x,n);
ll ans=(qc(2,T.v[0][0])+qc(b,T.v[1][0]))%mod;
if(d!=b*b&&n%2==0) ans--;
printf("%llu\n",ans);
}
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法的更多相关文章
- 【bzoj4002】[JLOI2015]有意义的字符串 数论+矩阵乘法
题目描述 B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 输入 一行三个整数 b;d;n 输出 一行一个数表示模 7528443412579576937 ...
- 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...
- 【BZOJ4002】[JLOI2015]有意义的字符串 数学
[BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...
- [JLOI2015]有意义的字符串
4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1000 Solved: 436[Submit][St ...
- B20J_1297_[SCOI2009]迷路_矩阵乘法
B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ_5015_[Snoi2017]礼物_矩阵乘法
BZOJ_5015_[Snoi2017]礼物_矩阵乘法 Description 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第 一个朋友会带给他 ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法 Description 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛 ...
随机推荐
- 修改访问的后缀contant
设置Struts 2处理的请求后缀及Action调用 1.在struts2中默认处理的请求后缀为action,我们可以修改struts.xml 和struts.properties来修改默认的配置,在 ...
- ThreadPoolExecutor的运转机制
最近发现几起对ThreadPoolExecutor的误用,其中包括自己,发现都是因为没有仔细看注释和内部运转机制,想当然的揣测参数导致,先看一下新建一个ThreadPoolExecutor的构建参数: ...
- oracle数据库中的trim不起作用
在项目中使用datastage软件将sqlserver数据库的数据导入到oracle中的时候,出现了一些空格,然而使用trim相对应的字段发现没有作用,空格还存在,并没有去掉. 使用length(.. ...
- Access Treeview树节点代码一
Private Sub TreeView0_Updated(Code As Integer)Dim ndeindex As NodeSet ndeindex = TreeView0.Nodes.Add ...
- SQL遇到的问题
1.问题描述:拼接sql字符串涉及到表变量时报错. 解决办法:把表变量的定义一同放在字符串中. 2.问题描述:EF添加实体后,调用存储过程调用不到 解决办法:必须先db.SaveChanges()后 ...
- jquery中利用队列依次执行动画
如果有5个隐藏的div,要让它们依次显示,通常的做法是要一个一个嵌套在回调函数里面,这样导致代码看起来非常不直观. $("#div1").slideDown(1000,functi ...
- OO,OO以后,及其极限
1.什么是软件开发? 软件开发的过程就是人们使用各种计算机语言将人们关心的现实世界映射到计算机世界的过程: 现在的计算机的数学理论基础是由计算机的开山鼻祖,大名鼎鼎的图灵于1937年提出的图灵机模型. ...
- EF Code First 数据迁移配置
这里我想讲清楚code first 数据迁移的两种模式,还有开发环境和生产环境数据迁移的最佳实践. 1.1 数据迁移综述 EF Code first 虽然已经有了几种不同的数据库初始化策略,但是大部分 ...
- 学习MySQL我们应该知道哪些东西?
随笔:小编由于年前一直在找工作,而年后找到工作后又一直在忙工作,所以也很少有时间给大家写点什么,总的来说呢,回顾一下之前面试的几次经历,也曾小小的总结了一下自己的不足,发现自己虽然一直在原有的公司(外 ...
- 第二章 ArrayList源码解析
一.对于ArrayList需要掌握的七点内容 ArrayList的创建:即构造器 往ArrayList中添加对象:即add(E)方法 获取ArrayList中的单个对象:即get(int index) ...